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AI2T: Building Trustable AI Tutors by Interactively Teaching a
Self-Aware Learning Agent

Anonymous Author(s)

Figure 1: Authors tutor AI2T in HTML interfaces and grade its step-by-step solutions. Certainty scores help authors determine
when AI2T has learned robust tutoring programs.

Abstract
AI2T is an interactively teachable AI for authoring intelligent tu-
toring systems (ITSs). Authors tutor AI2T by providing a few step-
by-step solutions and then grading AI2T’s own problem-solving
attempts. From just 20-30 minutes of interactive training, AI2T can
induce robust rules for step-by-step solution tracking (i.e., model-
tracing). As AI2T learns it can accurately estimate its certainty of
performing correctly on unseen problem steps using STAND: a
self-aware precondition learning algorithm that outperforms state-
of-the-art methods like XGBoost. Our user study shows that authors
can use STAND’s certainty heuristic to estimate when AI2T has
been trained on enough diverse problems to induce correct and com-
plete model-tracing programs. AI2T-induced programs are more
reliable than hallucination-prone LLMs and prior authoring-by-
tutoring approaches. With its self-aware induction of hierarchical
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rules, AI2T offers a path toward trustable data-efficient authoring-
by-tutoring for complex ITSs that normally require as many as
200-300 hours of programming per hour of instruction.
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1 Introduction
A dominant theme of the last decade of AI research has been to
use big-data machine learning to replicate patterns of behavior dis-
tributed across large datasets or explore uses for pretrained models
that have been produced in a data-driven manner. By contrast, AI2T
(pronounced A.I. tutee) is an AI agent that can be Taught interac-
tively, in a process that induces Trustable well-defined educational
programs. These are the two Ts of AI2T. A central issue with trust-
ing many AI capabilities trained with machine learning is that their
learned behaviors are rarely errorless or internally inspectable. Pop-
ular methods like deep-learning [37] fit high-dimensional neural
networks with inscrutable ‘blackbox’ weights that can produce
very flexible, but often inconsistent behaviors. AI2T avoids these
particular issues of trust by inducing well-defined programs ex-
pressed as hierarchical task networks (HTNs) [28]. AI2T induces
executable symbolic generalizations that are consistent with the
author’s training.

One way to trust machine-synthesized programs is to inspect
the induced programs directly. However, successful code checking
requires some programming proficiency and a familiarity with
the representation language targeted by the method of program
synthesis. AI2T attempts to guide users toward building trustable
programs in a different manner. It employs a machine learning
method called STAND that can learn efficiently from very little
data, yet still accurately estimate its prediction certainty on unseen
examples [66]. When STAND’s certainty scores tend to increase
its true holdout set performance tends to increase. This allows
AI2T to be self-aware of its learning, and users can use STAND’s
certainty scores as an indicator of when AI2T’s induced program
is complete and trustable. We show in simulation that changes in
STAND’s certainty estimates more accurately reflect actual changes
in holdout set performance than competing predictions from more
conventional (and relatively data-efficient) ensemble methods like
random forests and XGBoost, which happen to only be as good
as chance in this regard. Additionally, we show in a user study
that users can successfully use STAND’s certainty estimates, as a
heuristic for deciding when AI2T has been trained on sufficient
practice problems. STAND enables AI2T to be essentially self-aware
of its learning progress. This helps users estimate when they have
provided AI2T with enough training examples to induce programs
with 100% correct behavior.

The core features of AI2T span severalmachine learning paradigms
including machine teaching [69], interactive machine learning, [19],
and interactive task learning (ITL) [34]. At its core AI2T builds upon
the programming-by-demonstration (PBD) paradigm, where non-
programmers demonstrate program behavior instead of writing
code in a programming language [18]. Many demonstrations of
PBD have shown robust performance in automating simple single
action or sequential behaviors [21, 35, 40] that require minimal gen-
eralizations from users’ demonstrations. However, the challenges of
PBDmultiply when applied to building larger multi-faceted applica-
tions [46, 51]. AI2T can very robustly induce the core behaviors of
complex applications known as Intelligent Tutoring Systems (ITS)—
educational technologies known for their comprehensive adaptive
student support features. Authors train AI2T with a set of interac-
tions that go beyond PBD. These interactions are better described

as authoring-by-tutoring [45]—authoring with AI2T involves both
demonstrating solutions and interactively checking AI2T’s behav-
ior as it attempts to solve problems on its own. In this relationship,
the author is the tutor, and AI2T is the tutee. Therefore AI2T is
best described by Laird et. al.’s vision of interactive task learning
(ITL) [34], the idea of AI systems that can be taught complex and
robust new capabilities using a variety of natural interactions that
are intuitive to non-programmers.

1.1 Intelligent Tutoring Systems: The Original
AI Tutors

Long before recent efforts tutorwith generative AI, hand-programmed
expert-system-like AI were used to build Intelligent Tutoring Sys-
tems (ITS). Decades of learning science research has honed a set of
best practices for designing these conventional ITSs [20, 62]. ITSs
have been shown to be more effective than traditional classroom
instruction alone [62], and in some cases more effective than tra-
ditional human-to-human tutoring [33]. The key to historical ITS
successes has been instruction designed around learning-by-doing
exercises where the ITS provides step-by-step cognitive assistance
that adaptively supports students’ directed practice [13, 32].

For instance, model-tracing tutors track students’ step-by-step
solutions to determine in what ways their current knowledge aligns
with or diverges from a model of expert knowledge [30, 52]. Model-
tracing enables ITSs to directly track and adapt instruction to stu-
dent’s misconceptions and unmastered knowledge as it tracks their
progress through active step-by-step practice. When AI2T learns
ITS behavior it induces rule-based knowledge structures sufficient
for executing this historically difficult-to-build class of ITS behav-
iors. Model-tracing ITSs have been estimated to require as many
as 200-300 developer hours per hour of instruction [2]. In the two
domains that have participants author this work, AI2T cuts the
most difficult programming elements of authoring down to about
20-30 minutes of effort. Authoring with AI2T is similar to tutoring
a human, and involves mostly just solving problems and grading it
as it solves problems.

AI2T can induce correct and complete model-tracing behavior in
the sense that it induces rules that permit only the correct next ac-
tions in step-by-step problem solving, and no incorrect next actions.
This induced behavior also permits the generation of “bottom-out”
hints: correct next actions for problem steps that are requested
by students as a last resort when they are stuck [22]. Typically
other features of ITSs (which we do not focus on in this work) like
requestable conceptual hints, automatic feedback messages, and
knowledge-tracing (i.e. tracking students’ mastery of particular
knowledge) [17] are built on top of the kinds of rule-based tutor
models that AI2T learns.

Readers may fairly wonder whywe have not taken an LLM-based
approach. Large LanguageModels (LLMs) have many exciting appli-
cations in education but have yet to demonstrate behaviors similar
to model-tracing tutors. Insofar as out-of-the-box LLM chatbots
‘tutor’, they typically default to providing full step-by-step expla-
nations similar to textbook worked examples [53]—an impressive
feature no doubt, but one that is prone to abuse [14], and inconsis-
tent with historically successful ITS designs that focus on learning-
by-doing exercises. Even if an LLM is prompted or fine-tuned to
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evaluate intermediate steps of a student solution in-progress, there
is no guarantee that it will provide consistently accurate evalu-
ations and, indeed, its underlying statistical inference approach
makes 100% accuracy highly unlikely.

While LLMs have improved rapidly on static benchmarks of
academic tasks, especially math benchmarks like GSM8K [16] and
MATH [27], more incisive investigations support the notion that
LLMs rely heavily on memorizing problem-solution pairs. Mirzadeh
et. al. show that small perturbations in GSM8K problems cause pre-
cipitous declines in LLM accuracy [48], and recent LLM evaluations
on tutoring system content—presumably out-of-distribution from
static benchmarks—show impractical rates of error of at least 10% on
step-by-step solution generation and grading tasks [23] In an educa-
tional setting, even a small rate of hallucinated incorrect instruction
may do more harm than good. Plausible but incorrect responses are
a likely recipe for producing student misconceptions. Conventional
hard-coded tutoring systems are by contrast decidedly precise in
execution—when properly debugged they don’t make mistakes—
and moreover in the best cases, they are precisely designed. Their
interfaces and instructional strategies are carefully crafted around
insights yielded from investigations of domain experts and students.
AI2T innovates toward authoring these trustable and intentionally
designed tutoring programs without writing or verifying code.

1.2 Traditional ITS Authoring
Several tools like CTAT example-tracing [2], OATutor [55], and oth-
ers [5, 26, 54] offer approaches that are faster than programming-
based authoring and accessible to non-programmers. Yet these
methods place considerable limits on ITS control structures. OATu-
tor supports strictly sequential “tutoring pathways” [55], and CTAT
example-tracing supports graphs of states and actions that can di-
verge, re-converge, and manifest unordered groups [2]. Both CTAT
example-tracing and OATutor enable means of mass-producing
problems within these fixed control structures via a template-filling
approach, where special variable strings are replaced by problem-
specific content detailed in spreadsheets. In practice, this method of
mass-producing problems still requires some programming effort,
for instance, by writing programs to fill in the content of each step
in a spreadsheet formula language [2, 55]. By contrast, authoring
with AI2T requires no programming (or program checking), but
can produce behaviors that are typically only implementable by
programming.

The domains in which these programmed rule-based model-
tracing ITSs are particularly useful include complex procedural
skills that involve context-specific decision making, and multi-step
domains that should permit some solution flexibility that is impracti-
cal to capture in fixed sequential or graph-based control structures.
STEM-based procedural tasks are a major category of domains
where these features are desirable, yet any domain that teaches
complex procedural skills is a good candidate for the kinds of model-
tracing behaviors that AI2T can author.

1.3 Issues with prior Authoring-by-Tutoring
Approaches

Prior authoring-by-tutoring approaches like those prototyped with
SimStudent [45] and the Apprentice Learner (AL) [43, 63], have

demonstrated efficiency benefits over conventional authoring tools.
However, in studies of these prior approaches, untrained partici-
pants [63], and in some cases also the creators of those approaches
[43, 45, 64], failed to produce ITS behavior that was 100% model-
tracing complete. Model-tracing completeness is a measure of how
nearly a program imitates the behavior of a model-tracing ITS. It is
defined as the proportion of reachable problem states across a large
holdout set of problems where the program permits every correct
next action and no incorrect actions. Weitekamp et. al reported that
their authoring-by-tutoring approach with the Apprentice Leaner
(AL) fell short of 100% model-tracing completeness both because of
limitations in its interaction design and the learning mechanisms of
their agent [63]. For instance, they report interaction design issues
related to participants locating and fixing mistakes, navigating and
providing feedback over diverging solution paths, and estimating
when training is complete. AI2T builds on the interaction designs
and machine-learning approaches of prior work to resolve many of
these issues.

2 AI2T: An Overview
AI2T’s central interaction loop is similar to other authoring-by-
tutoring approaches. The author must:

(1) Build an HTML interface
(2) Demonstrate how to solve an initial problem
(3) Tutor the agent by grading it step-by-step over several

problems and provide demonstrations when it is stumped

2.1 Interface Building
Since AI2T works on top of arbitrary HTML interfaces, the initial
interface authoring process is not a focus of this work. There is
no shortage of good HTML editors, including ones specifically
designed for ITSs [2], and which include innovative new features
like natural language to HTML translation [9]. The second and
third steps are more central to this work, they are the means by
which the user teaches AI2T.

2.2 Demonstration Interpretation
The then- component of the if-then rules of a tutoring system dic-
tate how individual steps are performed. In authoring-by-tutoring
these are learned by demonstrating a step solution. The agent then
synthesizes one ormore short programs that reproduce each demon-
strated value in a problem solution. In AI2T the user selects among
these possible programs.

2.3 Tutoring for Control Flow Induction
The if- component of the if-then rules of a tutoring system dic-
tate its control flow: the permittable solution paths. In authoring-
by-tutoring, this is learned from positive and negative examples
produced by the author grading the agent’s step-by-step actions.

3 Research Questions
Prior work has identified several challenges with authoring-by-
tutoring [63], especially with its third phase of learning rule pre-
conditions from interactive tutoring. AI2T solves many of these
problems in part or in whole through improvements in its underly-
ing AI and interaction design. Our research questions are as follows:
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(a) (b) (c)

Figure 2: User interactions for demonstration interpretation. (a) In a fraction arithmetic tutoring system, an author has
demonstrated the converted fraction 6. The agent displays several possible explanations for this demonstration in a drop-down.
The arguments of the correct explanation are currently highlighted in the tutor interface. (b) In a multi-colum arithmetic
tutoring system, an author narrows down the explanations of a demonstrated 4 by selecting the values they used as arguments.
(left-frame) They first select the 8 and (right-frame) they select the 6. At each selection, the agent’s explanation for how the 4
was generated is immediately updated. (c) In a geometry tutoring system, an author describes the formula that produced their
demonstration 90 in natural language. The agent uses this description to guide the search for a formula that explains it.

• RQ1: To what extent are AI2T’s machine learning algo-
rithmsmore robust and data-efficient than prior approaches?

• RQ2: Does AI2T resolve previous interaction design issues
with authoring-by-tutoring, such as locating and fixing
mistakes and authoring multiple solution paths?

• RQ3: Can AI2T help users predict when they have taught
it 100% complete tutoring behavior?

RQ3 has implications for interactive task learning beyond authoring-
by-tutoring. When training data is limited, machine learning sys-
tems are typically poor at predicting their performance on holdout
data. By contrast, AI2T is self-aware of its learning; it can make
precise estimates of its performance in unseen situations, and how
learning experiences affect its holdout performance (so long as
those examples are not too far out of distribution). By surfacing a
simple certainty score back to users, they can estimate how close
AI2T is to being finished with learning.

4 Demonstration Interpretation
AI2T innovates beyond SimStudent, and AL on the second step
of authoring-by-tutoring: demonstration interpretation. With sub-
second latency, AI2T can search for formulae that transform values
in the interface into the value demonstrated by the user by test-
ing millions of compositions of functions chained from a corpus
of primitive functions. At first, this process is unconstrained and
may return a set of candidate compositions (Figure 2.a) which is
sometimes too large for the user to select among. However, the
user can guide AI2T’s search and narrow down the set of candidate
explanations by additionally selecting the correct input arguments
for the target formula (Figure 2.b), or by describing the target for-
mula mathematically or in natural language (Figure 2.c). When a

formula is selected by the user it acts as the then component of the
if-then structure in AI2T’s learned rule-like skills.

Similar problems in action model learning [4], program synthe-
sis, and inductive logic programming [50, 58], claim to innovate
in this space by the introduction of special meta-primitives and
constraints that impose biases on a wide and blind search. AI2T
instead constrains search by putting a human in the loop—a human
who may be ignorant of the contents of AI2T’s function library
(which includes hard-to-anticipate functions like OnesDigit(x) or
GreatestCommonDenominator(x)) yet can guide the search for a so-
lution through natural language and argument identification. With
these tools, the user can zero in on an appropriate formula with
natural tutoring interactions instead of needing to write formulae
from scratch.

This method has been reported in prior work [redacted], so it is
not our emphasis here. Yet for the sake of completeness, we note
that these interactions have been well-received by the pilot testers
and the study participants of this work.

We leave an important subproblem in this space to future re-
search: what is a user to do if they need a primitive that AI2T does
not already have? This is of course an issue faced by all software
shipped with a preset function library; from ITS authoring tools
to spreadsheet editors. LLM code generation could play a role in
a solution while retaining AI2T’s emphasis on non-programmer
support. LLMs have certainly been helpful for expanding AI2T’s
function library to its current state. We leave this subproblem to
future work.
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Figure 3: The action window shows each of the actions proposed by the agent. Currently, action 3 of 4 is selected. The proposed
actions convert the expression 5/6 + 2/3 to have a common denominator 18.

5 Teaching Control Flow with Interactive
Tutoring

Tutoring system authoring suffers from a challenging design prob-
lem: the author must attend to the branching of alternative per-
mittable solution paths, yet normal problem-solving proceeds by
sequential steps. Prior authoring-by-tutoring approaches [63] have
struggled with usage patterns where authors validate just the first
correct action suggested by the agent (similar to grading a human
student), but neglect to grade actions to teach the agent alternative
solution paths that should be permitted by its tutor-model.

AI2T supports authors in visualizing and verifying alternative
proposed solution paths: 1) by presenting predictions of multiple
correct next actions in each intermediate tutor state, and 2) by en-
abling users to visualize and navigate between alternative solution
paths.

5.1 Supporting Complete Feedback in each
Tutor State

The action window (Fig. 3) frames AI2T’s central interaction loop,
whereby the author grades each of AI2T’s several proposed next
actions. Authors can visualize each action by selecting or hovering
over each item in the action window. Clicking the ✗ or ✓ icons
on the toggler (Fig. 3) in the action window assigns negative or
positive feedback to each action. The user is prompted to provide
feedback to any ungraded actions: “Is this action correct?”. When
all actions are graded it asks: “Demonstrate any other actions for
this step. Press Move On to apply these actions”. This reminds the
author to demonstrate any correct next actions that AI2T has not
already proposed.

Small indicators overlaying the tutor interface give a bird’s eye
view of which interface elements AI2T has proposed acting upon

in each tutor state and offer an alternative place to click or hover
to preview or select actions.

Color and icon changes signify the user’s progress toward grad-
ing each of AI2T’s proposed actions. The author must change the
ungraded actions (grey), into positively graded (green ✓) or nega-
tively graded (red ✗) actions. Any user-demonstrated actions appear
in blue . This pallet uses a particularly light green, dark red, and
slightly blue-tinged grey, to reduce mix-ups common to various
forms of color-blindness. We verified this pallet using an applica-
tion that simulates protanopia, deuteranopia, and tritanopia and
double-checked with colorblind labmates. Selected actions addi-
tionally use color to highlight their arguments (e.g. 6 * 3, in Figure
3).

5.2 Supporting Solution Path Navigation
AI2T automatically generates graphs that help authors visualize
AI2T’s tutoring behavior, and track the solution paths that they have
already trained it on for each problem. These behavior graphs en-
able authors to navigate between different problem states. Since an
AI2T agent learns hierarchical rule-like knowledge structures (not
graphs), each generated behavior graph is simply a visualization
of the agent’s induced program applied to a particular problem—
not a direct visualization of its internal knowledge structure. The
behavior graph shows all of the diverging action sequences that
the agent believes are correct. This allows the author to navigate
between problem states by clicking on particular nodes, and select
particular actions from the edges.

Users can pan through AI2T’s generated behavior graph by
scrolling or dragging, and zoom in and out with shift+scroll. En-
tering a new state for any reason including clicking on a node,
selecting an edge in a different state, or applying an action in the
main interface, automatically animates the graph view so that it is
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Figure 4: (a) A generated behavior graph and (b) a behavior graph zoomed into the current state. Of 3 proposed actions, the 1st
and 3rd have been given positive feedback and the 2nd is selected. Demonstrations are blue, actions with positive feedback
are green, and grey edges are proposed actions that still need feedback. (c) A revised implementation of the behavior graph
visualization that displays unordered groups in place of permutated action sequence like in (a).

centered on the new state and its downstream actions. This feature
keeps the graph aligned with the current problem state.

Our user testers did not have much trouble with navigation with
these graphs. However, many users found it disorienting when the
same actions occurred more than once in the graph but in different
orders because of step-order flexibility. To resolve this issue we
introduced a feature where AI2T explicitly learns unordered groups
as part of hierarchical task network induction (described later in
section 4.1). These groups are displayed within the behavior graphs,
considerably simplifying their structure so that one edge in the
graph tends to correspond to just one unique action. This feature
also sped up authoring by reducing the number of problem states
that authors needed to grade AI2T in.

5.3 Visualizing Action Certainty
Finally, within the action window, and on each edge of the behavior
graph visualization, AI2t reports a continuous certainty score rang-
ing between -100% and 100%. These scores indicate how certain the
AI2T is that each proposed action is correct or incorrect. Negative
values indicate that the agent is mostly certain that an action is
incorrect and positive values indicate varying degrees of certainty
that the proposed action is correct. As we describe in section 8.2,
these values come from STAND’s instance certainty measure which

Figure 5: Three actions proposed in the action window with
certainty scores (49%, 49%, and 66%)

we will show is a fairly reliable indicator of prediction certainty
and a good indicator of AI2T’s actual learning progress—something
we show is not true of many alternative methods of estimating
prediction probability. Roughly speaking, if the agent proposes
only actions with 100% certainty scores for a particular problem
state, then this is a fairly strong indication to the author that the
agent will exhibit 100% model-tracing complete behavior in similar
situations. Mixtures of lower certainty scores are a fairly strong
indication that the user should continue to train the agent on more
problems.

6 AI2T’s Generality
Prior simulated learner systems have illustrated that they succeed
(or usually just partially succeed) at learning to solve or replicate
tutoring behavior in a variety of domains. Prior work with Sierra
[61], SimStudent [45], and the Apprentice Learner [42], are similar
to but less robust than AI2T, have trained agents on dozens of do-
mains including algebra, stoichiometry [39], geometry [10], simple
linguistic tasks like Chinese character translation and article selec-
tion [41], a few games, and other arithmetic tasks like subtraction
[61] and multiplication.

Our internal evaluations of AI2T have shown that it can replicate
(with 100% model-tracing completeness) several existing tutoring
systems using its current primitive library, including 10 from the
Cognitive Tutor MathTutor suite (middle school math) [1], and
another 30 from Apprentice Tutors (algebra and pre-calculus) [24].
Between these two paradigms, the Cognitive Tutor MathTutors
exhibit the interesting varieties of control-flow-based solution flex-
ibility that we emphasize in this work. They take about 30 minutes
to author with AI2T. The relatively more advanced topics from the
Apprentice Tutors, are comparatively simple in terms of permitted
solutions; demanding particular sequential steps in most cases. It
takes just one or two demonstrated solution sequences to replicate
these domains with AI2T.
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Often solution flexibility in an ITS is more a function of an
author’s design mentality than it is a function of the basic require-
ments of solving problems from start to end. A fundamental design
perspective in the early days of ITSs was that the tutoring system
was a means of developing student’s knowledge to align with an
expert system: a collection of meticulously hand-written rules, that
replicate the behaviors of experts, surfaced through methods of
knowledge elicitation like cognitive task analyses [15]. A regular
outcome of cognitive task analyses is that the scope and complexity
of an expert’s tacit knowledge usually far exceeds what they can
describe by direct description [68]. Typically, much of the forgotten
details pertain to special considerations employed in edge cases,
and the criteria for deciding between different courses of action
(i.e. the if component of if-then rules). Our special focus here on
AI2T’s ability to robustly learning skills that require contextual
decision-making echoes this history. We solve here a subproblem
that is foundational to the development of tutoring systems that
support the mastery of true expertise instead of just the practice of
rote sequential steps.

7 User Study Domains
As our focus here is on algorithmic advances (RQ1), basic usability
(RQ2), and testing the feasibility of novel interaction techniques
(RQ3), we limit our selection of target domains to ones that balance
representation in prior literature, complexity, and wide familiarity.
The third is essential as it allows us to attribute user errors to
interaction issues instead of to mathematical mistakes.

Our simulation experiments and user studies test users as they
author with AI2T on two domains: multicolumn addition and frac-
tion arithmetic. Both domains require some contextual decision-
making and permit step-order-based solution flexibility. Expressed
as heirarchical procedures both domains involve deciding between
alternative subprocedures based on the context of the problem.
Multicolumn addition has been tested in prior authoring-by-tutor
approaches [63] and is a good example of a domain where an author
must almost always resort to programming the ITS behavior in
place of conventional graphical authoring tools since the solution
steps vary considerably between different problem instances.

In multicolumn addition, students practice the algorithm for
summing large numbers together by computing partial sums and
carrying their tens digit (if necessary). The ground-truth model-
tracing behavior permits add and carry actions to be applied in
either order. The main difficulty of this domain in terms of inducing
the correct behavior is that a contextual decision must be made
about when to carry a 1 or not, and for always adding three numbers
instead of two if a 1 was carried from the previous column. To
replicate prior work [63] we limit this domain to problem instances
that have pairs of 3-digit numbers.

In fraction arithmetic, students apply one of three arithmetic
procedures (add, multiply, or convert-then-add). This design was
conceived in response to data that showed that a large proportion of
students’ fraction arithmetic mistakes pertain to applying incorrect
fraction arithmetic procedures, and not necessarily to applying
each procedure individually [56]. The tutor partially scaffolds this
decision by first asking the student if they "need to convert these
fractions before solving". The tutor is flexible in terms of the step

order of filling in the digits of the converted fraction, and final
combined fraction. In both tutors, the student must press a ‘done’
button as a final action.

8 AI2T: Mechanisms for Self-Aware,
Data-Efficient, and Robust Induction

Prior authoring-by-tutoring approaches have used simulated learn-
ers that simulate human-like induction [42, 45, 61, 67] from demon-
strations and supervised correctness feedback. These simulated
learners largely share a similar breakdown of 3 core learning mech-
anisms that enable data-efficient induction that can be taught inter-
actively. These mechanisms collectively induce several production-
rule-like skills, that execute step-by-step solution strategies and flex-
ibly track students’ solutions in an ITS. Unlike hand-programmed
production rules, skills are refined over the course of interactive
training to reflect the author’s instructed behaviors.

Each of the typical 3 core mechanisms in simulated learners used
for authoring-by-tutoring induces different kinds of generalizations
within each skill: 1) compositions of primitive functions that express
how skills produce actions from other information in an interface,
2) patterns or concepts that capture where each skill might locate
candidate inputs and outputs, and 3) preconditions that express
when as in what contexts a potential candidate application of a skill
is a correct application of the skill. The mechanisms that learn these
different types of generalizations are typically referred to as how-,
where-, and when-learning mechanisms respectively [45, 63].

AI2T’s learning-mechanism implementations are similar to prior
implementations of AL [63] with the exception of two important in-
novations. AI2T uses an algorithm called STAND for when-learning
(i.e., precondition induction), and introduces a fourth learning
mechanism which we call process-learning that organizes induced
skills into hierarchical task networks (HTNs). Unlike methods that
have users describe HTN structures directly in a top-down manner
[29, 36, 40] AI2T learns HTNs directly from authors’ demonstrated
action sequences (i.e. via bottom-up induction). Process-learning
requires no new interactions from authors. Authors still only need
to solve problems and grade AI2T as it solves problems. The author
does not need to plan or verify any part of processs-learning’s in-
duced HTNs. In our user studies (section 6) we do not even display
AI2T’s induced HTNs to participants.

8.1 Process-Learning: Hierarchical Task
Network Induction from Action Sequences

AI2T’s process-learning mechanism induces HTNs that recursively
break tasks into subtasks that terminate in primitive skills that take
individual actions. Methods in the HTN are higher-order skills that
carry out tasks as ordered or unordered sequences of sub-tasks
and primitive skills. Figure 6 shows an HTN that AI2T induced for
the fraction arithmetic ITS. The task “Combine Fraction Expres-
sion” can be achieved by three different disjoint methods: method
2 adds like fractions, method 3 converts fractions to have the same
denominator before adding them, and method 4 multiplies frac-
tions. The induced preconditions for each of these methods from
when-learning (not shown in the figure) gate their consideration as
acceptable solution strategies. In this example, the correct precondi-
tions for methods 2, 3, and 4 would make them mutually exclusive.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

UIST, September 28–October 1st, 2025, Busan, Korea Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 6: A Hierarchical Task Network (HTN) learned by AI2T for the fraction arithmetic tutoring system. A task trace
(dotted-purple) and action trace (dashed-green) of solving an addition problem with fractions with different denominators.

However, in problems with multiple valid approaches to achieving
the same subtask, multiple methods may be applicable simulta-
neously, representing an alternative solution strategy permitted
by the tutoring system. For instance, Figure 6 captures just one
method (#5) for the “Convert Fractions” subtask, but an author
could certainly add another to the HTN by demonstrating it at the
appropriate problem step.

Learning correct ordering constraints with the typical 3-mechanism
approach without process-learning (like SimStudent and AL) re-
quires the author to give agents negative feedback when they sug-
gest applying individual skills out-of-order; often across dozens of
problems. For instance, prior authoring-by-tutoring agents built
with AL [63] have struggled to strictly sum multi-digit numbers
from right to left until authors first corrected several out-of-order
mistakes. Inducing skill preconditionswith the typical 3-mechanism
simulated learner approach often requires collecting diverse sets of
negative examples.

Adding process-learning (for a 4-mechanism approach) consider-
ably simplifies the learning of ordering constraints. Process-learning
situates primitive skills into methods within a hierarchical process.
When AI2T first sees an author solve a problem with a particular
action sequence, it assumes that all solutions should proceed in
strictly that order. When AI2T observes additional solutions that
deviate in their action order, or use entirely new approaches it may
relax its ordering constraints or add new methods to its HTN. As
authors demonstrate new forms of solution flexibility AI2T’s HTN
introduces new subtasks and methods to accommodate them.

An important feature of AI2T’s process-learning mechanism is
that its HTN induction is agnostic to lesson order. Prior simulated
learner approaches that induce HTNs, like VanLehn’s Sierra system
[60, 61], have required curated lesson sequences or suffer complete
inductive failure. By contrast, AI2T will induce the same HTN
structure regardless of the sequence in which new problems are

presented, meaning authors do not need to explicitly design good
lesson plans for AI2T.

AI2T’s HTN representation language also allows for the induc-
tion of HTNs with optional or conditional symbols in methods.
For instance, carrying a 1 in a multi-column addition problem is
a conditional step—it only occurs for partial sums greater than
10. An example of an optional step may be writing the numbers
that are added or subtracted from each side of an algebra equation
before calculating the next line—an author may not want to pe-
nalize students who explicitly skip this step, but still track student
solutions and provide adaptive supports in cases where that step is
not skipped. Similarly, recent work has promoted HTN-based tutor
models as a favorable ITS design paradigm [59]. HTNs naturally
capture knowledge at multiple levels of granularity, and thus are a
good knowledge representation for ITSs that support adaptive scaf-
folding where incremental step-by-step tutoring support is faded
as students become more proficient [31, 47, 57]. We do not evalu-
ate this particular feature in this work, but AI2T’s HTN induction
approach is certainly conducive to supporting it.

8.2 STAND: Self-Aware Precondition Induction
In prior work, when-learning has been identified as a major limit-
ing factor for efficient authoring [63]. Typically how- and where-
learning converge to their final generalizations from just one or
two examples. When-learning requires several additional correct
and incorrect examples to induce correct pre-conditions for each
skill. Our introduction of process-learning in AI2T, greatly sim-
plifies the burden of when-learning by situating each primitive
skill in methods that can have strictly ordered or unordered con-
stituents. In prior work, when-learning’s induced pre-conditions
needed to control the order in which primitive skills were applied.
With process-learning order constraints are mostly handled by the
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HTN, and when-learning induces pre-conditions that simply select
between alternative methods in the HTN.

Independant of process-learning, STAND is more data-efficient at
precondition induction than prior when-learning approaches [66].
Prior approaches include fitting decision trees [43, 63] or applying
inductive logic programming approaches [45] to learn each skill’s
preconditions. Approaches like these learn a single best set of pre-
conditions that select correct actions and reject incorrect ones. By
contrast, STAND learns a space of preconditions that are consistent
with the authors’ positive and negative training examples. This
space accounts for a complete set of good candidate preconditions
instead of arbitrarily selecting single sets of preconditions by break-
ing ties within a greedy construction process randomly. In this way,
STAND explicitly models the inherent ambiguity of trying to learn
preconditions that perform well on unseen examples—something
that is especially challenging in an interactive training setting with
limited training data.

By inducing a space of generalizations, STAND is conceptu-
ally similar to a version space. However, STAND does not suffer
from "version-space collapse", where induction completely fails
from noisy data, nor does it restrict conditions only to conjunctive
expressions [49]. STAND can learn arbitrary disjunctive normal
logical statements and when combined with AI2T these statements
can be expressed with relational (i.e. variablized) predicates. AI2T
enables relational condition learning by restating problem state
features before they are passed to STAND. Features are expressed
relative to the interface element being acted on, and the interface
elements that were selected as arguments by each skill’s match-
ing pattern (induced by where-learning). Importantly STAND is
very computationally efficient, meaning it does not add precievable
latency time between authors’ interactions.

In addition, STAND can produce a measure (from -100% to 100%)
called instance certainty [66] that estimates how certain it is of
predicting the correctness label of an unseen example. STAND’s
instance certainty on single unseen examples tends to increase
when its holdout set performance increases, meaning it is a good
heuristic for estimating actual learning gains.

Conventional methods that can estimate their prediction prob-
ability including ensemble approaches like random forests and
XGBoost lack this property; as we demonstrate in the following
section. STAND’s instance certainty measure is more effective than
these alternatives because it captures how unambiguous the label
prediction of an example is given all of the sets of preconditions
that capture the example. Low instance certainty indicates high dis-
agreement among STAND’s space of possible preconditions. High
instance certainty reflects high agreement. Ensemble methods op-
erate similarly, but not nearly as comprehensively. The countable
constituents of an ensemble don’t characterize all good candidates,
just several stochastically constructed ones.

9 Simulation Experiments
In addition to testing AI2T with users, we wanted to ensure that
STAND and process-learning produce improvements in learning effi-
ciency over prior approaches. In these experiments, we first evaluate
STAND using it for when-learning in a typical 3-mechanism simu-
lated learner configuration (with how-, where-, and when-learning,

but not process-learning). We compare STAND to various alterna-
tive when-learning approaches using an automated training system
that mimics the demonstrations and feedback of an ideal author.
We apply this training approach in the two domains we had partic-
ipants author in our user study (section 10): multicolumn addition
and fraction arithmetic.

In this setup, each agent receives ideal on-demand demonstra-
tions and correctness feedback. In each state all proposed next
actions are labeled as correct or incorrect. If an action is missing
then it is demonstrated to the agent with annotations that make
the underlying reason for the action unambiguous. Each demo is
annotated with the formula for producing the action’s value, and
the arguments used. This replicates the behavior of an ideal user
who always selects the correct formula to explain each demo from
among the suggested possibilities. These annotations enable how-
and where-learning to produce errorless generalizations almost
immediately, meaning essentially all errors can be attributed to
when-learning. No annotations are provided to assist when-learning
besides the correctness labels of each action. Just like an ideal au-
thor, the training system trains the agent on all alternative solution
paths for each problem.

We compare several classifiers with STAND:

(1) Decision Tree: A decision tree using gini impurity [8] as
the impurity criterion.

(2) Random Forest: Scikit-learn’s implementation of random
forest ensembles [7]. Random forests use bagging [6] to
independently train several decision trees on subsets of the
data. We configure the random forests to use 100 trees.

(3) XG Boost: An ensemble method that trains multiple deci-
sion trees one at a time. This method uses gradient-based
sampling to re-weight the samples for subsequent trees
[12].

These tree-based methods are chosen because they excel at learn-
ing from small datasets of structured data. In all models no limits are
set on tree depth or leaf size since for these condition-learning tasks
the available features from the tutoring interface are sufficient for
separating correct and incorrect candidate actions perfectly. Since
the features selected by ideal preconditions should be noiseless,
the trees will already tend to be no more complex than the ideal
solution, and limiting their depth could only prevent that solution
from being discovered. The two ensemble methods are included
for comparison with STAND, and to compare the utility of their
prediction probabilities with STAND’s instance certainty estimates.
Each model is re-trained on 40 repetitions over a sequence of 100
randomly generated problems.

9.1 Productive Monotonicity: Certainty Score
Change vs Holdout Set Performance Change

Productive monotonicity is defined as the proportion of changes
in certainty estimates over holdout set actions that increase (to-
ward 100%) when the action is correct and decrease (toward -100%)
when the action is incorrect. High productive monotonicity reflects
the degree to which changes in certainty estimates mirror actual
learning gains (i.e. increases in holdout set performance).
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Figure 7: Productive Monotonicity By Problem

Our results show that STAND’s instance certainty measure has
considerably higher overall productive monotonicity than the two
ensemble methods’ prediction probabilities. Thus, increases in in-
stance certainty reflect actual increases in holdout set performance,
meaning instance certainty is a relatively good heuristic for de-
termining when STAND has learned. By comparison, the random
forest and XGBoost’s prediction probabilities align with actual
changes in holdout performance only about 50% of the time—they
are not much better than chance.

In multi-column addition, STAND’s productive monotonicity is
< 50% for the first 60 training problems and > 50% thereafter. This
pattern may occur in this domain because in the early stages of
training the space of generalizations that STAND encloses is still
growing (and entertaining new disjunctions) as new edge cases
are encountered. Fractions may not show a similar pattern because
purely conjunctive preconditions tend to suffice in this domain,
and so STAND’s space of generalizations tends to strictly shrink
monotonically throughout training.

9.2 Precision at High Certainties
If a when-learning classifier predicts that an action is correct with a
high certainty of 90%-100% then there should be a very low proba-
bility that the action is incorrect.

Table 1: Total Precision at High Certainties

MC Addition Fractions
≥ 90% = 100% ≥ 90% = 100%

STAND 93.19% 99.81% 95.70% 100.00%
Random Forest 97.15% 94.79% 95.19% 93.72%

XGBoost 98.35% 100% 99.39% 100.0%

Our simulations show that XGBoost has the highest precision at
high certainties. For predictions of 100% STAND is nearly as precise
as XGBoost in multicolumn addition and equally 100% precise in
fractions. For predictions of ≥ 90% STAND’s precision is closer to
90%, which is arguably a desirable property—as it indicates some
alignment of instance certainty with actual ground-truth precision.
These results validate that certainty scores of 100% are typically
only given to actions that are truly correct, and that certainty scores
between 90% and 100% tend to apply to actions with a small proba-
bility of error.

9.3 Per-Problem Completeness
Finally, we verify that together, STAND and process-learning pro-
duce more data-efficient learning and higher rates of 100% model-
tracing completeness on holdout data. We report each model’s
model-tracing completeness on a holdout set of 100 problems, eval-
uated at the end of each training problem.
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Figure 8: Average holdout completeness by problem.
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Table 2: Average Holdout Completeness at Problem N, and Number of 100% Complete Repetitions at problem 100.

Multicolumn Addition Fractions
N=20 N=50 N=100 100% Reps N=20 N=50 N=100 100% Reps

STAND + HTN Induction 99.72% 100.0% 100.0% 40/40 99.69% 99.94% 99.99% 38/40
STAND 85.45% 96.10% 98.62% 19/40 98.72% 99.91% 99.99% 38/40

Decision Tree 75.75% 91.86% 96.97% 10/40 88.15% 97.24% 99.88% 38/40
Random Forest 64.16% 90.02% 95.53% 0/40 88.13% 97.44% 98.97% 11/40

XGBoost 81.20% 95.40% 98.01% 3/40 81.12% 96.20% 97.34% 27/40

In both domains, STAND’s average completeness is higher than
the competing models throughout the training sequence. This im-
plies that STAND has better data efficiency and asymptotic per-
formance since it can achieve greater levels of completeness with
fewer training problems. In 19 of 40MC addition repetitions STAND
achieved 100% completeness after training on a sequence of 100
problems compared to 10 of 40 repetitions for decision trees. In
fractions, 38 of 40 repetitions achieved 100% completeness with
STAND and decision trees. The relative performance of the decision
tree, random forest, and XGBoost varies between domains. Notably
the random forest was the worst in multicolumn addition, likely
because its bagging approach of sampling subsets of the data had
the effect of dropping important edge cases, which are particularly
important in this domain.

Introducing process-learning so that AI2T induces HTNs instead
of independent primitive skills improves AI2T’s learning even fur-
ther. In this configuration, AI2T’s absolute holdout set performance
is strictly higher than the competing models throughout training,
and in every single training repetition 100%model-tracing complete-
ness is achieved in multicolumn addition. These results validate
the absolute performance benefits of STAND and show empirically
how process-learning promotes model-tracing completeness be-
yond what can be achieved with the typical 3-mechanism approach
used by prior authoring-by-tutoring systems.

10 User Studies
We evaluated AI2T in two studies where 10 participants per study
authored multicolumn addition and fraction arithmetic. Partici-
pants were tasked with tutoring AI2T until they believed it would
exhibit correct tutoring behavior for any problem in that domain.
When participants self-reported that they tutored AI2T on enough
problems we scored their agents’ model-tracing completeness on a
large holdout set of 100 problems. Participants moved on to the next
domain after seeing their scores. Participants were not permitted
to tutor AI2T more to get a better score.

The central aim of these studies was to evaluate what configu-
rations of the agent and interface design best support authors in
teaching AI2T to induce correct and complete programs. Beyond
qualitative observations of usability, a core element of this eval-
uation is to determine whether our interaction design supports
authors in building model-tracing complete tutoring systems.

10.1 Methods
10.1.1 Recruitment. Each of our 20 participants was recruited via
email or Slack fromwithin our professional network. Users engaged
in these studies remotely via Zoom and consented to be recorded

as they screen-shared while working with AI2T. For participation
in these IRB-approved studies users were compensated with a $30
Amazon gift card. We limited all sessions to a maximum of 90 min-
utes. No participants had used AI2T prior to these investigations.

10.1.2 User Instruction. In both studies, participants authored mul-
ticolumn addition and then fraction arithmetic. Participants re-
ceived a short tutorial on how to use AI2T: we showed them how to
demonstrate each step of the problem 777+777, and showed them
how to give feedback to the agent on a subsequent problem 222+222.
Prior to having participants begin authoring each domain, we de-
scribed the behavior that we expected the final tutoring system
to have, and asked that participants engage in a think-aloud: “Say
whatever you are thinking as you work with the tool”. Participants
always began authoring with a blank agent with no prior training.
Participants were provided with a blank interface for each domain,
they were not required to make their own.

While users worked with AI2T we made ourselves available
to answer questions. We refused to give participants any advice
concerning when they should stop training the agent. We limited
ourselves to suggesting that they train the agent on a variety of
problems and suggested that they should at least keep training AI2T
until it seemed like it had stopped making mistakes.

At the end of each session, we asked users to give their open-
ended feedback about their experience. We simply asked: “What
worked well and what didn’t work well as you were using the tool?”.
In study 2 we also explicitly asked participants if they noticed the
certainty score indicators and whether they considered them when
deciding whether or not to stop training the agent. To validate that
our AI2T is usable by non-programmers we had study 2 participants
report on their level of programming experience on a Likert scale
from 1-5.

10.2 Study 1: Piloting an In-Development
Version of AI2T

Study 1 was conducted to assess the efficacy of an in-development
version of AI2T. This version of AI2Twas configured to replicate the
3-mechanism agent configuration used by SimStudent and AL. This
early variant of AI2T utilized STAND but lacked a process-learning
mechanism. Study 1 participants were not particularly successful
at authoring robust tutoring systems. However, observing their
difficulties yielded insights that informed the final design of AI2T
for study 2.

Three things are missing in study 1 version of AI2T 1) the agent
has no process-learning mechanism, 2) the behavior graph does not
display unordered groups so the graph edges diverge combinato-
rially, and 3) there is no action window so authors must use the
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edges of the generated behavior graphs or the indicators in the
tutor interface to locate and switch between different proposed
actions. In this version, certainty scores only appear over edges in
the behavior graph, since there is no action window.

Table 3: Results for Study 1

MC Addition Fraction Arithmetic
User# Completeness Minutes Completeness Minutes
1 90% 55 -
2 99.80% 33 64.69% 32
3 71.43% 31 100% 24
4 100% 33 92.76% 34
5 91.45% 24 100% 33
6 90.60% 24 38.05% 32
7 100% 22 85.75% 35
8 100% 23 95.29% 23
9 99.15% 28 76.43% 29
10 57.07% 50 - -

Mean 90% 30.33 82% 30.25
Median 95% 28 89% 32

10.2.1 Quantitative Results. The quantitative results for study 1 are
outlined in Table 3. For multicolumn addition, 3 of 10 participants
taught agents that achieved a 100% model-tracing completeness
score on the holdout set of 100 random problems. Two of our par-
ticipants took more than half of the allotted 90 minutes for the
first domain, and we did not have them complete the second. In
fraction arithmetic just 2 of the 8 participants achieved 100%. In
both domains, the total authoring time—the time between begin-
ning authoring and self-reporting that they believed the agent had
achieved correct and complete behavior—was about 30 minutes.

10.2.2 Qualitative Results. Automatic behavior graph generation is
one major improvement in AI2T over prior authoring-by-tutoring
interaction designs [45, 63]. Study 1 users generally had little trou-
ble panning and selecting states and actions in the behavior graph.
However, without unordered group induction, the study 1 behavior
graphs displayed every permutation of action order as a distinct
path in the graph. This greatly inflated the number of problem
states displayed to the user and encouraged an authoring strategy
whereby users graded actions along every permutation. This ap-
proach was time-consuming and not strictly necessary (grading a
small subset of the paths would have sufficed). Some users were
disoriented when previously graded actions reoccurred in parallel
paths as ungraded actions. Navigating to these edges gave them
the impression that their previous effort had been undone, as they
needed to verify the same actions again.

Without an action window, the study 1 interface showed cer-
tainty scores above each behavior graph edge. This presentation
did not appear to be effective as none of the users mentioned the
certainty scores in their think-aloud or follow-up interviews.

Interaction issues notwithstanding, study 1 participants were
fairly positive about our in-development version of AI2T. 8 of the
10 participants in study 1 had used other ITS authoring tools before,
including CTAT’s example-tracing authoring tool. In follow-up
interviews, several participants commented that they found AI2T
easier to use than CTAT example-tracing because after demon-
strating solutions to a single problem, the agent would suggest

step-by-step solutions automatically for the remaining problems.
For instance, one participant remarked “This is a lot nicer than
CTAT. . . I like that it mostly does the problems for you.” These
users commented that checking the agent’s step-by-step solutions
was much easier than demonstrating several problems themselves,
and noted that teaching AI2T seemed to take less time and effort
than filling out step-by-step problem solutions in a spreadsheet.

10.3 Study 2: Assessing the Revised AI2T
As we showed in simulation (section 9) the introduction of process-
learning makes AI2T far more effective at achieving 100% model-
tracing completeness in both of our user study domains. However,
a short set of pilot tests prior to study 2, with 4 participants showed
that many of the user interaction issues observed in study 1 re-
mained despite this improvement. Compared to study 1, study 2
adds process-learning mechanism and two interface improvements:
unordered groups in graphs, and the action window. Taken together
study 1 and 2 form a loose pseudo-experiment, in which study 1
establishes a baseline with several issues and study 2 implements
several fixes to remedy those issues.

10.3.1 Participant Pool. For study 2 we broadened recruitment to
include participants with a wider variety of backgrounds. The par-
ticipants for study 2 included 5 graduate students from Anonymous
University A, 3 of which specialized in educational technology, 2
human-computer interaction graduate students, 4 biology graduate
students from Anonymous University B, and 1 professional spe-
cializing in the authoring of instructional technology for a major
ITS project unaffiliated with University A or B. Participants’ self-
reported genders were equally male and female. On a 1-5 Likert
scale-based self-assessment of programming experience, 6 of 10
participants reported a 2 out of 5. We consider a 1 or 2 to be a
non-programmer. These 6 non-programmer participants included
our 4 biology graduate students, and the 2 HCI graduate students,
both of which specialize in design.

10.3.2 Quantitative Results. Table 4 outlines the results for study 2.
8 of 10 participants succeeded at training agents that achieved 100%
holdout completeness for multicolumn addition. Prior work in this
domain had reported lower median model-tracing completeness
rates of 92%, with no instances of 100% [63]. Our study 2 results
also showed users completing training in about half the time com-
pared to prior work: a median of 22 minutes instead of 41 minutes.
Reviewing the recordings of the two participants who did not reach
100%, both made mistakes during training that they did not succeed
in tracking down and fixing.

In fraction arithmetic, participants self-selected all of their own
problems, and 5 out of 10 participants succeeded at training agents
that achieved 100% model-tracing completeness. The two lowest-
performing participants made mistakes during training that pre-
vented them from achieving more than 50% completeness (the same
two whomade mistakes in multicolumn addition). The median com-
pleteness in this domain was 99%. Participants trained the agent on
9 to 21 problems in this domain in 16 to 32 minutes with a median
of 22 minutes.

In our follow-up interviews we asked participants if they noticed
the certainty score indicators, and whether they considered them
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Table 4: Results for Study 2

MC Addition (normal) Fraction Arithmetic
User# Prog. Exp. Completeness Minutes N prob. Completeness Minutes N prob. Notice Use
1 2 100% 22 13 100% 21 20
2 2 100% 20 9 100% 32 18 ✓ ✓
3 2 100% 30 11 96.31% 30 16
4 5 100% 14 11 88.52% 17 13 ✓ ✓
5 2 90.96% 30 14 40.18% 19 9
6 5 100% 22 11 98.87% 16 10
7 5 100% 28 11 100% 27 14 ✓ ✓
8 3 89.16% 36 11 38.73% 18 14
9 2 100% 22 10 100% 25 18 ✓ ✓
10 2 100% 18 9 100% 23 21 ✓

Mean 3 98% 24.2 11 86% 22.8 15.3 5/10 4/10
Median 2 100% 22 11 99% 22 15

when deciding when to stop training the agent. 5 of 10 participants
said that they did notice the certainty scores, and 4 indicated that
they considered themwhen decidingwhether or not to stop training
the agent. Specifically, these participants indicated that they took
the presence of a low certainty action as an indication that the
agent needed additional training on similar problems. 3 of these
4 participants achieved 100% model-tracing completeness in both
domains.

10.3.3 Qualitative Results. In our follow-up interviews several par-
ticipants remarked on how quickly they learned to use our tool,
and how they could succeed at using AI2T to author two tutoring
systems in less than an hour. As in study 1, several users remarked
on how quickly the agent was able to learn from their instruction
and how the authoring process became much easier once they en-
tered the stage of mostly checking the agent’s behavior on new
problems. For instance, one of our biology graduate student partici-
pants remarked: “This is wild, I could teach it all that math in like
20 minutes [per topic].”

While some study 1 participants had commented on issues with
the smoothness of the “interaction loop”, very few study 2 par-
ticipants had constructive negative feedback. Our observations of
users led us to believe that the inclusion of the action window in the
study 2 design was helpful in this regard. Some study 1 participants
jumped between problem states without fully giving feedback to
all of the agent’s proposed actions, whereas study 2 participants
very consistently fell into a pattern of looking through actions in
the action window and giving them all feedback before moving on.
The inclusion of unordered groups meant that there were far fewer
states in the study 2 version for users to navigate through. For in-
stance, much of the users’ time in study 1 was spent going through
many diverging states in large behavior graphs, especially for the
fraction arithmetic domain, but unordered groups spared study 2
users from the tedium of grading combinatorial paths. While some
users in study 1 expressed that they had become disoriented navi-
gating between problem states, study 2 participants did not indicate
any similar issues.

Our follow-up interviews provided strong evidence that the users
who noticed the certainty scores used them successfully to gauge
when they should stop training the agent. For instance, participant
2 in study 2 said, “I definitely would have stopped teaching it earlier

if I hadn’t seen the low confidence on some problems that I thought
it already knew how to do.”

10.4 Discussion
Overall our study 2 results show that our redesign produced a con-
siderable improvement over study 1. Half of the study 2 participants
succeeded at training agents with 100% complete tutoring system
behavior on both domains, usually in under half an hour. Our inter-
views with users also confirmed that displaying STAND’s instance
certainty measure was useful for assessing the AI2T agent’s learn-
ing progress toward 100% completeness. Several participants in
study 2 indicated that this indicator influenced their decision of
when to stop training the agent on new problems. This is a strong
preliminary indication that the certainty score indicators had the
intended effect. A future randomized experiment would be able
to lend stronger statistical evidence for the connection between
the availability of this indicator and high authoring completeness.
However, the productive monotonicity measure we report in our
simulation experiments already establishes that this measure accu-
rately reflects agent learning, so it is reasonable to conclude that
if users were explicitly trained to interpret it, they could use it
successfully as a heuristic for estimating holdout completeness.

In study 2, when users did not achieve 100% model-tracing com-
pleteness they either made clear mistakes during authoring (e.g.
users 5 and 8) or trained AI2T on too few problems. Thus, improv-
ing AI2T’s robustness may largely come down to better support
for training users and helping them catch mistakes. Participants
3, 4, and 6 likely fell short of 100% because they trained AI2T on
too few problems in fraction arithmetic (we did not identify any
uncaught mistakes upon reviewing their screen recordings). Partic-
ipant 4 was the only user among these three who claimed to use
certainty scores, and the only participant familiar with the trajec-
tory of the AI2T project—specifically that AI2T had become more
data-efficient in the months prior to study 2—and thus they may
have had a skewed belief of how little training was required. When
participants strictly interpreted a less than < 100% certainty score
as an indication of incompleteness they trained AI2T on a sufficient
number of problems. Consequently, a little bit of training to check
for mistakes, and correctly interpret certainty scores may go a long
way toward helping authors use AI2T effectively.
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10.5 Who can use AI2T?
The major aim of this work was to prototype a method whereby
the authoring of complex ITSs is made simple, fast, and accessible
to non-programmers. Instructional designers, learning engineers,
teachers, and researchers are all professionals who may or may not
have programming expertise, but who could all benefit from being
able to author complex ITSs quickly. Many of our participants’
backgrounds align with the more likely populations that would
use a tool like AI2T: instructional designers, learning engineers,
and researchers. While teachers are a population of interest, a
prevailing theme in our conversations with K-12 teachers has been
that curating practice materials is beyond the scope of their job
description and an unwelcome burden on top of their already busy
schedules. Perhaps AI2T is a convenient enough tool to soften that
position. Albeit, our broader aim of simplifying the authoring of
incisive and complex tutor adaptivity is arguably better suited to
professionals with the bandwidth to commit that complexity to
experimentation.

11 Future Work
11.1 Design Support for Open-ended Authoring
Our focus of this work was AI2T’s usability, but more open-ended
authoring evaluations may shed light on the unique needs and
design perspectives of in-service professionals. ITS authoring typ-
ically requires authors to deliberately design interfaces around
adaptive step-by-step support, and this design process typically
involves a design loop: a cyclic process of classroom testing and
revision [3]. A common mistake in this process is designing instruc-
tion around final problem solutions or problem-solving with too
large of steps that do not sufficiently break down strategies into
their most fine-grained elements. AI2T may play a beneficial role
in supporting more adaptive designs earlier in development. Much
like students with low-prior knowledge who benefit from bite-sized
instruction that reduces cognitive load [31, 47, 57], AI2T tends to
learn more effectively from granular step-by-step instruction. Prior
work has demonstrated that this feature of simulated learners can
be useful for automated student model discovery [38], and as a tool
for cognitive task analysis [44]. Computational models of learn-
ing like AI2T that model the general processes by which students’
knowledge structures change throughout learning have broad ben-
efits toward furthering the science of learning and for analyzing
individual learning tasks [25, 41, 65] that go well beyond the affor-
dances of traditional posthoc analyses of student performance data
[11].

11.2 Broader Authoring with AI2T
One challenge of using AI2T for general-purpose authoring is that
it depends upon a set of primitives in its function library to ex-
plain and generalize from users’ demonstrated actions. A great
deal can be authored with AI2T’s current primitive library. In addi-
tion to the two domains we focus on in our user studies, we have
replicated dozens of Cognitive Tutors and Apprentice Tutors with
AI2T. Nonetheless, any fixed library has constraints. As we have

previously mentioned, LLMs could play a role in softening that lim-
itation. It seems plausible that an author could "vibe code" missing
primitives without leaving AI2T’s interface.

Adding yet more performance and learning mechanisms to AI2T
could also expand the scope of what it can be used to author with
simple primitive functions. For instance, Li et. al. added a representa-
tion learning mechanism to SimStudent [39] that greatly simplified
the primitive functions it needed to learn algebra equation-solving
skills. There are similar opportunities along these lines for using
pre-trained generative AI to parse content like text and images into
a structured representation that AI2T can reason over. These fea-
tures could extend AI2T’s authoring scope to include domains with
word problems and problems that involve reasoning over figures.

11.3 Supports for Finding and Fixing Mistakes
Two of our study 2 participants made training mistakes that pro-
duced errors that they did not identify and fix, leading to very low
final completeness scores. One of the more impactful varieties of
mistakes was teaching AI2T an incorrect skill from an incorrect
demonstration, or as a result of bad explanations with incorrect
formulae or arguments. Since bad skills are relatively easy to iden-
tify, eliminating this kind of mistake could be supported by simply
adding a feature for removing or editing whole skills, instead of
requiring users to delete all of their supporting examples manually.

Mistakes of mislabelling actions’ correctness is a harder category
of mistake to track down. However, STAND may provide a path
toward a solution. Internally STAND filters examples into bins of
common examples (like leaves in a decision tree) [66]. It may well
be that mistakes and edge cases tend to filter into bins isolated
from the rest. If this is the case, it may be possible for STAND to
accurately suggest training examples that it suspects are mistakes.

11.4 Reintroducing Code-Checking
This work has almost entirely avoided displaying AI2T’s internal
knowledge representations back to users—they do not see the HTNs
or skill preconditions that it induces. We have done this in part to il-
lustrate the possibility of a dynamic between humans and teachable
AI, whereby trust in the AI’s behavior can be established without
verifying its synthesized code. However, a powerful affordance of
AI that learns symbolic representations is that sufficiently trained
users can, in principle, debug them. By forbidding this possibility
outright AI2T falls far to one extreme of a spectrum between non-
programming and purely programming-based interactions. Yet, the
space in between is ripe with possibility. In the future, AI2T may
display its internal knowledge back to users, and they may in turn
edit that knowledge or describe new knowledge back to AI2T in
turn.

12 Conclusion
Well beyond prior attempts at implementing authoring-by-tutoring
[43, 45, 63] this work has demonstrated a path towards methods
of ITS authoring that are approachable for non-programmers, yet
enable the authoring of flexible and robust ITS behaviors that are
typically only implementable with hand-programmed rules. Prior
works with SimStudent and AL have only shown imperfect ITS
induction [63, 64] even in the hands of their creators [43, 45, 64]. By
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contrast, our evaluations of AI2T show half of our untrained partici-
pants, whoweremostly non-programmers, succeeding at producing
model-tracing complete ITSs with authoring-by-tutoring, and sev-
eral others achieving nearly 100% model-tracing completeness. This
work presents several interaction design considerations for future
authoring-by-tutoring work, including methods for verifying and
annotating demonstrations, visualizing and navigating between
solution paths, and displaying agents’ certainty of proposed actions.
STAND [66] and our approach to HTN induction from action se-
quences mark major machine learning improvements over prior
authoring-by-tutoring systems. They enable more data-efficient and
robust interactive induction. One of our more surprising results is
that STAND’s instance certainty measure could predict improve-
ments in holdout set performance far better than common ensemble
methods like XGBoost, and was used successfully by many of our
participants to determine when AI2T had been trained on a suffi-
cient number of problems.
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