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Abstract. The field of Artificial Intelligence in Education (AIED) cares by sup-
porting the needs of learners with technology, and does so carefully by leverag-
ing a broad set of methodologies to understand learners and instruction. Recent
trends in AIED do not always live up to these values, for instance, projects that
simply fit data-driven models without quantifying their real world impact. This
work discusses opportunities to deepen careful and caring AIED research by de-
veloping theories of instructional design using computational models of learning.
A narrow set of advances have furthered this effort with simulations of induc-
tive and abductive learning that explain how knowledge can be acquired from
experience, initially produce mistakes, and become refined to mastery. In addi-
tion to being theoretically grounded, explainable, and empirically aligned with
patterns in human data, these systems show practical interactive task learning
capabilities that can be leveraged in tools that interactively learn from natural tu-
toring interactions. These efforts present a dramatically different perspective on
machine-learning in AIED than the current trends of data-driven prediction.
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1 Introduction
These proceedings celebrate the 30th anniversary of the Artificial Intelligence in

Education society. At its founding in 1993 John Self was the editor of the JAIED jour-
nal and the AIED society’s president. Self’s belief was that AIED is set apart from
other fields of computing because—as Kay and Mcella have paraphrased nicely—AIED
“cares” and is “careful” [7] (or in Self’s words “cares, precisely” [23]). Self argued that
AIED cares by adapting to and supporting the needs of human learners. Unlike theoret-
ical computer science, AIED engages with human participants and embraces the reality
that educational technology has an impact on people in the real world. AIED cares by
supporting learners as they are, not as we imagine them to be. AIED is careful because
it uses a variety of research tools to deepen its understanding of its subjects. It draws
from and contributes back to a broad set of disciplines, including artificial intelligence,
cognitive psychology, education, and sociology. AIED researchers use interdisciplinary
tools as needed to understand and model learners, build theories of learning and instruc-
tion, and effectively help learners become what they aim to be.

Self coined the term “computational mathetics” to refer to a broad set of disciplines
that study matters of learning, including many forms of student modeling and diagnos-
tic agents familiar to us today [22]. However, in recounting the legacy of computational
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mathetics, he lamented that student modeling had failed to produce solid theoretical
groundings to inform Intelligent Tutoring System (ITS) design, compared to for in-
stance, other fields of engineering like aeronautics:

“Aircraft design has progressed through many centuries of visions and a few
decades of serious experimentation to largely depend on the theory of aeronau-
tics and specialised test environments. Would ITSs ever be built by a blend of
beautiful theory and empirical fine tuning?” (1998, pg. 354)
Self imagined that if student models were not just data-structures, but also exe-

cutable programs then they could “be used not only descriptively but also predictively,
to predict how a student would solve problems in the future (assuming the model were
accurate)” (1998, pg. 351). In other words, if student models were simulations of learn-
ing they could be executed on instructional material to make relative predictions about
instructional design choices, much like a wind tunnel guides aeronautic design. Self
believed that the field was hesitant to approach the topic of student simulation because
it was too “complex” (1995, pg. 92) for the theories of learning and AI of the time.

In 2023, it is worth reconsidering if Self’s high fidelity computational models of
learning are on the horizon. As we argue in the following pages, the answer is resound-
ingly yes!—but not necessarily because of the technologies driving the current AI hype.
But, if we adopt an appropriate mindset of care and carefulness in choosing our foun-
dations, there does seem to be an exciting path forward.

First, we should consider the state of care and carefulness in current AIED research.
It’s all too easy to claim those virtues by association without knowing how to, or caring
to put them into practice, and there is a fine line between the ideal and debatable cases.
Throughout its history AIED has thrived from the use of caring and careful interdisci-
plinary methods like user studies and A/B experiments that reach outside of our core
computer science toolbelt, into the real world. But the consideration of care and careful-
ness is not characterized only by checking methodological boxes in the classroom. Care
and carefulness are as much applicable in purely analytical or computational programs
of research that begin and end behind a computer screen. The bare minimum require-
ment of caring in AIED research is that we quantify and build arguments for the value
of our work in the real world. In advance of our consideration of how computational
models of learning can help us deepen these values, let us digress to highlight a subfield
of AIED in which this caring justification often falls short. In consideration of Self’s
sentiment that learning engineering had methodological holes [23], we will take an an-
alytical estimation approach—an approach common among engineers but underutilized
in AIED. With a simple back-of-the-napkin calculation we will estimate the potential
real world impact of building better knowledge tracers and in doing so highlight some
epistemic pitfalls to engaging in caring and careful student modeling.

2 Do better student models produce better knowledge tracing?
Knowledge tracers [5] estimates students’ knowledge of individual skills, concepts,

or facts as the probability of answering future practice items correctly [21], or of achiev-
ing a latent “mastery” state [5]. Students continue practicing problems associated with
particular skills, concepts, or facts until the tracer’s estimate of mastery exceeds some
threshold. Knowledge tracers are typically fit to student performance data and utilize
time, number of practice opportunities, or other features to estimate mastery.
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Let us raise and attempt to answer the question analytically: If we built a 5% bet-
ter statistical model for knowledge tracing how much time would we expect the new
tracer to save students? Consider the following calculation (with code1). Our analytic
approach, confronts us immediately with an often overlooked consideration: that the
model’s performance in the neighborhood of the mastery threshold is the only region
where performance matters since this is where the tracer decides if it should stop se-
lecting items of each kind. Between an old model and a new one a total RMSE (Root-
Mean-Square-Error) improvement of 5% is a fairly large one—comparable for instance
to the difference between the best model in [6] (0.329 RMSE) and normal Performance-
Factors-Analysis (0.343 RMSE) [21]2. But model improvements are rarely reported
only around the mastery threshold. So we’ll assume, perhaps incorrectly, that a total
model improvement of 5% implies a 5% improvement in this critical neighborhood.

Consider a logistic regression model like Cen. et. al [3] where number of opportuni-
ties is our only feature. We’ll assume that the performance threshold point for mastery
is 95% and that we have a new model with 5% better RMSE at the theshold point than
an older one. Independent of our choice of model, we can compute analytically that
the old will report 87.84% student accuracy instead of 95% (assuming it was underesti-
mating). Let us also assume that our new model is actually the ground-truth model and
set a few constants of this ground truth: a first opportunity intercept of 35% accuracy,
and an average of 12 opportunities to achieve mastery. Assuming equal proportions of
change in intercept and slope, we can expect our new model to save students an average
of 4.19 extraneous practice attempts. If every attempt takes 15 seconds, and there are
500 knowledge components learned over a year, then over the course of that year, the
old 5% worse model would have students practice 8.75 hours more or about 35% of the
total 25 hours expected in ground-truth. Compared to similar model-driven calculations
reported by Yudelson et.al [32][31], our analytically derived 35% improvement is an
overestimate, but well within the right order of magnitude.

Should we then conclude that the project of building incrementally better knowledge
tracers is a valuable one? Yet more careful considerations notwithstanding3, it would
seem that the answer is yes!—at least insofar as we can build yet better student models.
But, it would seem that this project is only accidentally aligned with a justifiable real-
world impact. If our calculation had found that a 5% RMSE improvement produced
only a 0.1% time saving, or if a review of the last two decades of student modeling
showed no improvements in the neighborhood of the mastery threshold (only in the
region preceding it), then we would be forced to accept those efforts as time wasted.
The typical measures of overall fit statistics simply do not address these concerns. They
do not quantify improvement in terms of the real-world experiences of students.

In this particular subfield, the caring consideration of connecting models to their
real world impact is decidedly the exception and not the rule. This pattern should con-
cern us. Neglecting to connect models to their potential real world impact is like build-
ing a car and never test driving it. The apparent source of this cognitive dissonance is

1 https://github.com/DannyWeitekamp/Quantifying-Knowledge-Tracing-Time-Saved
2 KDD Cup 2010 EDM Challenge: Algebra I 2005-2006 dataset
3 Knowledge tracers are fit to formative assessment data not delayed summative assessments. An

improved fit to formative data is no guarantee of improved supports for long-term retention.

https://github.com/DannyWeitekamp/Quantifying-Knowledge-Tracing-Time-Saved
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an overemphasis on the logic of justification of big-data machine-learning which con-
sider systematic benchmarks and improvements in fit statistics as valuable in their own
right—hardly a caring or careful logic if it makes no direct connection to its impact on
real human learners. Taking the final step of justifying the real world impact of models
should be standard practice in AIED.

2.1 Examples of Fitting Models with Care

Today’s data-driven machine-learning allows for an approach where problems are
solved just as prediction problems. But we should consider what is lost in that simplic-
ity. We can almost always better support learning by seeking to theoretically understand
it. AIED researchers should always consider engaging with their research from a learn-
ing scientist’s perspective—raising and attempting to answer questions regarding their
subjects of inquiry: human learners and how to best support their learning with technol-
ogy. Exemplary instances of this mindset include learning curve analysis and automatic
domain model selection [3]. These tools also fit student performance models—the dif-
ference is how they are used. In these cases, fit statistics and patterns of performance are
not ends in themselves, they are used diagnostically for finding real issues in learning
materials. Negative signals like flat learning curves and poor relative domain model fits
can help learning engineers identify issues in instructional materials [3]. Nevertheless,
interpreting these signals and revising instruction in response is still more of an art than
science, requiring the engineer to make educated guesses about how best to best modify
instruction. While these tools deepen our understanding of our subjects of inquiry, there
is a great deal more we can do to deepen our understanding of learners and instruction
beyond what existing tools allow.

3 Going Deeper with Computational Models of Learning

A common mentality of AI researchers well into the 1980s was that AI research
could be a means of building and testing theories of learning—a complementary ap-
proach to the experimental methods of cognitive psychology. AI research has shifted
away from this perspective toward purely technical and practical concerns, but it is
worth reflecting on whether we’ve lost elements of care and carefulness in that shift.

Unlike purely practical AI, computational models care by simulating elements of
cognition explicitly, instead of treating them implicitly by reducing cognitive phenom-
ena to numerical quantities or probabilities like in statistical models that fit parameters
to data. A computational model embodies an executable theory which is often more de-
tailed than an experimentally driven theory because the computational theory must be
precise enough to be implemented in simulation, yet general enough to reproduce broad
sets of human behaviors, and furthermore plausible enough to satisfy known constraints
of human cognition, like for instance, having only particular prior knowledge or a finite
working memory, to name just a few [12]. When computationally modeling learning,
the modeler is confronted not only with these computational and cognitive constraints,
but also with an empirical reality glimpsed through student data. The simulation must
succeed at learning from the kinds of natural instruction that humans experience, [16]
and reproduce patterns of correct performance and errors.
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As a practical means of deepening our insights into human learning, computational
models of learning can be used to make a priori predictions without need for prior col-
lection of student data. For instance: Which of two forms of instruction will work best?
What kinds of misinterpretations and mistakes will students make as they practice? How
can we most optimally adapt to particular student behaviors or traits and produce the
best learning outcomes? In answering any of these questions, a computational model
has a key advantage over a statistical one: simulated cognitive reasons underlying its
predictions. A computational model simulates the formation of knowledge in response
to particular instructional events, and the execution of that acquired knowledge on new
material. As a predictor, this goes well beyond simply fitting parameters to patterns in
data, and holds the promise of enabling learning engineers to not only predict which
instructional design decisions are optimal but also predict why. These explainable pat-
terns of simulated cognition also allows researchers to debug and revise their theories
intelligently when the computational model’s predictions prove to be incorrect.

Developing AI under the many constraints of computational modeling is no doubt
challenging. It is a cyclic project of refinement aimed at building general purpose ex-
ecutable simulations of learning that can be applied to a wide array of domains, learn
from several forms of instruction, and match human learning behavior faithfully. It is a
harder and more principled project than the development of purely practical or predic-
tive AI where performance statistics are often the sole guiding objective. Nonetheless, it
is likely the most direct and precise means of building a theory of instructional design.

3.1 The Baby in the Good Old-Fashion AI Bathwater

In setting foundations for computational models of learning, it is tempting to forgo
early forms of AI and look to the trends of data-driven machine-learning. A dominant
theme of the last decade of AI has been to demonstrate that new capacities can be ac-
quired by fitting high-dimensional deep-learning [13] models to copious amounts of
data. Deep-learning has been used to train many state-of-the-art AI like Alpha-Go and
Chat-GPT, yet it it offers us very little toward the purpose of modeling human learning.
Despite the complexity of its high-dimensional multi-layered structure, deep-learning
relies on a single over-simplified and data-hungry learning mechanism: regression via
gradient descent. By comparison, humans are remarkably data-efficient learners able
to achieve mastery in academically relevant tasks from only a handful of instructional
and practice opportunities. Humans, no doubt, owe their learning efficiency to a vari-
ety of forms of reasoning that can help them rapidly construct and verify knowledge.
Since our objective with computational modeling is to explain and intelligently sup-
port these remarkable learning capacities, the data-inefficiency and inexplicability of
deep-learning’s blackbox knowledge structures make for poor foundations.

If deep-learning has dispensed with the capabilities we care about in computational
modeling, perhaps we should return to the hard-coded expert-systems of the Good Old-
Fashion AI (GOFAI) era? This too would be a poor choice. Expert-systems model the
execution of human-like expertise using hard-coded rules, but do not model the acqui-
sition of expertise from experience. One could be forgiven for thinking that we are nec-
essarily stuck between two bad options: the choice between the flexibility of acquiring
blackbox representations in a data-driven manner, and the rigidity of hard-coded but
explainable symbolic knowledge structures. Even cognitive architectures like SOAR
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[10] and ACT-R[2], that aim to model learning, align heavily with the hard-coded in-
flexibility of GOFAI. They rely heavily on predefined domain-specific rules—modeling
learning only by tuning the activation patterns of hard-coded rules or by recombining
them into new specialized structures. The gaping hole in these theories is how those
initial rules came to be acquired through experience, and how that acquired knowledge
can produce human errors without the sources of errors being explicitly programmed.

To achieve the best of both options, there is a very clear, but seriously underutilized
approach to machine-learning—a neoclassical approach where expert-system-like rules
can be efficiently acquired in a highly flexible yet mostly symbolic bottom-up fashion.
One place to look for such advances is in the emerging field of interactive tasking learn-
ing (ITL) [11]. ITL systems seek to acquire performance capabilities from just a few
instances of human provided instruction. Some ITL systems like Rosie [19], are built
on cognitive architectures, and share many of their assumptions. Many more ITL inno-
vations may deviate entirely from feasible human cognition, so our choice of adopting
these innovations should be made carefully.

In the near-term the more directly useful neoclassical approaches to machine-learning
can be found in past AIED research on simulated students, which have been touted as
foundations of ITL in their own right [11]. Three such systems, Sierra [24], SimStudent
[18] and the Apprentice Learner (AL) [17], are able to learn to perform academically
relevant procedural tasks (including but not limited to, learning math and science pro-
cedures) from at least two kinds of instruction: demonstrations of correct performance,
and positive and negative correctness feedback—core forms of instruction that students
experience in a one-on-one tutoring setting or while working in an intelligent tutoring
system. Since these systems can learn in a bottom-up fashion from learning materials
like intelligent tutoring systems (ITSs), they are a compelling basis for Self’s proposed
executable student models. They provide an answer to the question of how knowledge
can be efficiently induced from first experiences, initially produce errors, and then be-
come refined into expertise through practice.

3.2 Setting our Foundations in Induction and Abduction

There are several broad categories of learning consistent with this neoclassical view
of machine-learning that we might consider as foundations for a computational model
of learning. I highlight Sierra, SimStudent and AL because they implement purely in-
ductive and abductive learning mechanisms. Induction is the formation of knowledge
by generalizing from examples. Abduction is the use of existing knowledge to find the
most likely reason underlying an example. Both forms of reasoning can produce imper-
fect knowledge structures from instruction and reproduce human errors.

There are certainly alternative foundations. For instance, deduction: finding that
which follows logically from what is already known, and—drawing from the sugges-
tions of prior works [16][27]— learning from being told, learning by analogy [8], plan-
ning and debugging towards a goal [10], reinforcement learning [20], speed-up learning
through practice [10][2], just to name a few. It is all too easy to fool ourselves into think-
ing that any one of these particular learning capabilities supersedes the rest, encom-
passing a vaguely characterized notion like logical reasoning or general intelligence.
We should consider the scope and applicability of each of these proposed mechanism
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individually and perhaps aim to unite these disparate methods under a unified toolset,
and with it build a sort of model-human learner.

The reason to favor induction and abduction as foundations over other choices is
they offer a means of generating potentially buggy knowledge from experiences. Many
forms of learning require some initial prior domain-specific knowledge. Even learning
from being told—which is the closest thing to directly programming a human, but not
anywhere nearly as precise or unambiguous—requires prior language comprehension
capabilities and vocabulary. If prior knowledge is always hard-coded as infallible exper-
tise then we run the risk of creating toy-models that replicate the acquisition of capac-
ities but fail to reproduce patterns of human error. Thus, the property of induction and
abduction of generating buggy knowledge from experiences establishes a solid founda-
tion for mechanistically modeling the real messiness of human learning. We shouldn’t
resign ourselves to the idea that learner errors are purely random, or that states of knowl-
edge are simply scalars on a continuum from unknown to known. Principled computa-
tional modeling rooted in induction and abduction can simulate the reasons underlying
human errors, and perhaps with this deeper theoretical understanding, allow us to make
more intelligent instructional decisions.

3.3 Evidence of Executable Student Models

Results from prior work with Sierra, SimStudent and the Apprentice Learner (AL)
show a compelling foundation for using inductive and abductive learning mechanisms
in executable theories of learning. An algorithmic level discussion of these systems
is beyond the scope of this work. Although, it is worth noting that they all rely on a
combination of multiple, mostly symbolic machine-learning mechanisms, and share a
common high-level structure—a testament to the fact that two computational modelers
held to the same constraints tend to come to similar solutions.

Generators of Errors and Domain Models: VanLehn et. al. found that when taught
multi-column subtraction, Sierra could reproduce two-thirds of the types of errors stu-
dents produced on quizzes—more than twice the errors explained by ad-hoc expert-
system based theories characterized by hard-coded “repairs” [25]. Sierra’s general the-
ory of inductive and abductive learning, was simultaneously more parsimonious than
the hard-coded theories yet better at generating a broad set of observed human errors.
A similar result, by Li et. al. showed that SimStudent could produce a better fitting do-
main model of a simple algebra ITS than those hand-built by learning engineers [14].
The domain model was constructed by using the execution of SimStudent’s induced
representations and production-rules to form knowledge-component to item mappings.
These examples show evidence that general theories of bottom-up learning from experi-
ences can generate empirically better predictions of overall student performance behav-
iors than ad hoc human-generated ones. An appropriate high-level theory can produce
surprising and highly specific theoretical predictions.

Models of Individuals: To explain the behavior of a theoretical average student is
one thing. It is another to explain the behavior of particular individuals. In this regard,
simulated learner technologies are still very young, but the results to date offer a com-
pelling picture of where they can take us. Maclellan et. al. showed that when Apprentice
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Learner (AL) agents were taught on the same sequences of ITS problems as students,
they could reproduce student error rates opportunity-by-opportunity in several different
domains—producing population learning-curves that aligned well with student perfor-
mance data without explicitly fitting to it [17]. As an interactive task learning system
AL is remarkably data-efficient and can produce learning curves orders of magnitude
closer to human curves than, for instance, deep reinforcement-learning.

Fig. 1: (left) AL learning curves on fraction addition and multiplication. Learning-rate is
far closer to humans than deep reinforcement-learning. (right) 1/0 pattern of correctness
of single AL agents on denominator conversion steps.

Building learning curves by applying AL’s theory of learning to an instructional
environment (like an ITS) opens a profoundly different perspective on student model-
ing than the typical data-driven one. When AL works in an instructional environment,
it learns to solve problems and produce actual step-by-step responses. By contrast, a
typical statistical model reduces student attempts to a binary random variable where
the probability of correct performance increases over time—an approach that seems
appropriate because the patterns of correct (1) and incorrect (0) responses in student
data often seem non-deterministic. For instance, a typical performance pattern might
be “0010111”, where the student answers correctly, but then incorrectly on later items
before consistently answering correctly. AL can reproduce this seemingly random be-
havior (Figure 1, right) without explicitly injecting randomness. AL agents use evidence
from individual instances of instruction to refine induced skills with every practice op-
portunity, especially on ones where its current knowledge structures produce mistakes
that receive negative feedback. So an AL agent’s pattern of performance can oscillate
between correct and incorrect as it solves new problems and converges toward mastery.
As a theory, this envisions the particular step-by-step differences in responses between
individual learners as arising from differences in prior experiences, creating particular
knowledge that when applied to particular new problems, produces particular responses.

This is not to say that this prior work has achieved a sort of Laplace’s demon of hu-
man learning—an infallible predictor of future responses from a known starting point.
A student’s starting point, the state of their prior knowledge before using an ITS, is
always a matter of uncertainty. Students can encounter instructional opportunities in
the classroom or at home that an ITS can’t be expected to know about. In these cases
we have to make guesses. For instance Weitekamp et. al., found better fits in AL gen-
erated curves by pre-training agents with a number of random practice opportunities
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commensurate with student’s predicted prior knowledge [29]—the content of prior ex-
perience was guessed while the quantity was tailored to the individual. Other cognitive
considerations, not included in these works like mechanisms of forgetting and atten-
tion are harder to model purely mechanistically, and may require some probabilistic
treatment. Beyond these considerations there is a litany of individual biological, so-
cial, and environmental factors—did the student sleep well? eat breakfast? do they have
ADHD?—that one could imagine injecting theories of into such a system.

In the near-term getting the general theory of learning broadly correct, is more im-
portant than adding precise theories of, typically unobservable, individual factors. For
instance, Weitekamp et. al. have reported discrepancies between trends in the types of
errors made by simulated and real students attempt-by-attempt [30]—so the cycle of
theory refinement is well underway. Our larger takeaway should be that the path to-
ward Self’s proposed executable student model is very clear. These demonstrations of
computational models of learning are surprisingly parsimonious, domain-general, and
accurate a priori first-order approximations. And, since they are inspectable and de-
buggable there is a path forward of further incisive and deliberate model development
constrained by computational, empirical, and cognitive constraints.

Testers of Instruction: So how closely do these simulated students need to align with
human learning behavior before we begin to trust them to make decisions about instruc-
tional design? Maclellan et. al. showed that AL agents could replicate broad differences
in patterns of student performance between blocked and interleaved instruction [17].
Beyond this, several unpublished results from participants in an AL-base workshop se-
ries capture the notion that if a simulated student fails to learn from an ITS, then it may
not be adaptive enough to support low achieving human students. A simulated student
failing to learn from an ITS can be a signal that the target knowledge taught by the ITS
does not follow logically from the provided instruction, even by induction over several
problems. A high-achieving, high prior knowledge student might succeed despite this
lack of support. But just like a human student with low-prior knowledge a simulated
student can typically only learn from instruction that begins from first principles and
breaks down problems into fine-grained substeps.

In addtion to succeeding or failing outright a simulated learner can somteimes learn
more efficiently from one form of instruction than another. For instance, AL agents can
learn multi-column addition considerably faster when the ITS teaches a version of the
procedure where 0’s are explicitly carried for each partial sum instead of being omitted.
This explicit-zero version of addition is easier for the agent because it provides a place
in the problem interface for explicitly accounting for having calculated the carry value.
So, the overall procedure follows a more consistent, easy to learn pattern. As a theory
this result makes the novel prediction that the same would be true for students.

4 Additional Practical Uses of Simulated Learners
So far I’ve addressed how we can gain a deeper theoretical understanding of learning

and instruction by building computational models of learning. Those of us accustomed
to wielding AI as a sort of magic wand of prediction will surely see more direct data-
driven or ready-made solutions (i.e like chat GPT) to a variety of practical problems in
education. In the near-term I’m certain that a great deal will be achieved this way, but
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in the long-term I’m less certain that this will be a consistently fruitful approach. It’s
hard to imagine deep-learning’s fuzzy mimicry holding a monopoly over more cogni-
tively principled approaches, especially when it comes to matters of supporting human
learning.

If deep-learning is today’s AI magic wand then simulated learners may well be
tomorrow’s—or at least find similarly wide applicability among the options in our
AI toolbag. As purely practical AI, simulated learners are remarkably data-efficient
and domain-general interactive tasks learners. They stand apart among ITL systems
because of an emphasis on cheating less with hard-coded elements and specialized
toy-environments, and not at all on mimicking patterns from large datasets. Instead
they have sought domain-general mechanisms of learning that can efficiently construct
knowledge bottom-up from natural tutoring interactions. For instance, Li [15] added
a representation-learning mechanism to SimStudent to eliminate hard-coded represen-
tational prior knowledge. Maclellan [17] with the creation of AL loosened require-
ments of special supplementary instructional experiences accompanying demonstra-
tions. Soon mechanisms for learning from natural language instruction will be incorpo-
rated into AL. All of these efforts have manifested, in simulation, a human-like ability to
learn in diverse ways from diverse experiences. This flexibility presents an opportunity
to build experiences where non-programmers teach simulated learners interactively.

Authoring ITSs: For instance, prior work has shown that simulated learners can be
used to author ITSs [18] faster than existing tools [28]. Programming production-rule
based ITSs require about 200-300 hours per hour of instruction authored. GUI-based
tools cut this time down by about half, but add restrictions on what can be built [1].
By instead authoring via interactively tutoring a simulated learner, the production rules
of an ITS can be induced from natural instruction instead of being programmed. This
could reduce authoring times to about the time taken to tutor a student: one hour per
hour of instruction. One does not need to do a particularly complex calculation to see
the potential impact here—the multiplicative effect of a wide array of people building
highly adaptive ITSs faster. With such a tool ITSs might be able to scale in the way that
MOOCs have, transitioning learning at scale away from passive content delivery toward
the highly adaptive deliberate practice based instruction characteristic of ITSs [9].

Teacher Training: There is a vast difference between knowing how to do something
and knowing how to teach it. A core element of that difficulty is that humans are rather
poor at reflecting on, and articulating the content of their tacit knowledge [4]. Another
is that it is hard to make a priori predictions about the misconceptions that novices may
acquire, and so it is difficult to tailor instruction to address or avoid them. If teachers
practiced by teaching simulated learners they may acquire a deeper sense of why mis-
conceptions arise since they can inspect the agent’s knowledge and inspect instances of
how buggy knowledge is constructed. They could also test various forms of instruction
to see which methods are most effective. VanLehn et. al. have articulated this vision
in much greater detail [26]. But, I might add to that vision the possibility of creating
domain-general versions of such tools for teaching new or specialized material. Pro-
fessional expertise is often acquired through experience, but not taught deliberately.
Future simulated learners may aide everyday professional development by lending ex-
plicit cognitive support in workplace apprenticeship relationships.
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5 Conclusion
This work has explored John Self’s themes of care and carefulness in AIED, espe-

cially with respect to analytical and computational projects of research. We have argued
that applications of data-driven machine-learning in AIED don’t always live up to these
virtues, as they often follow a misguided logic of justification based on improving per-
formance statistics that rarely take the final step of quantifing real-world impact. We
have proposed computational models of learning as means of engaging in more deeply
theoretical, caring and careful computational AIED research. Computational models of
learning care by seeking an explicit and detailed understanding of the mechanisms un-
derlying learning, which are often treated only implicitly through statistical modeling.

In any applied field of research there is a balance between theoretical and practical
advances. But we shouldn’t forget that in many fields of engineering theoretical ad-
vances have streamlined the development of the greatest practical advances. Self’s view
was that instructional design could be improved significantly if we had high fidelity
theories of learning that could inform instructional design. He imagined executing such
theories on instructional material, much like a wind tunnel tests aeronautic designs.
I’ve demonstrated here that prior simulated learner systems have begun this project
in earnest. The results to date show a promising path toward realizing Self’s vision of
executable theories of learning. These systems additionally show several practical inter-
active task learning use cases like ITS authoring, and teacher training. Perhaps the most
exciting element of these advances is their origins in AIED research. The unique caring
and careful perspective of AIED can contribute as much to the field of machine-learning
as it does to the classroom.
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