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Abstract. Simulated learners represent computational theories of hu-
man learning that can be used to evaluate educational technologies, pro-
vide practice opportunities for teachers, and advance our theoretical un-
derstanding of human learning. A key challenge in working with simu-
lated learners is evaluating the accuracy of the simulation compared to
the behavior of real human students. One way this evaluation is done is
by comparing the error-rate learning curves from a population of human
learners and a corresponding set of simulated learners. In this paper, we
argue that this approach misses an opportunity to more accurately cap-
ture nuances in learning by treating all errors as the same. We present
a simulated learner system, the Apprentice Learner (AL) Architecture,
and use this more nuanced evaluation to demonstrate ways in which it
does and does not explain and accurately predict student learning in
terms of the reduction of different kinds of errors over time as it learns,
as human students do, from an Intelligent Tutoring System (ITS).
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1 Introduction

Simulated learners are artificially intelligent agents that simulate human learn-
ing. Simulated learners offer a powerful set of affordances to AI powered instruc-
tional technology. Prior work has demonstrated the use of simulated learners for
efficient authoring of intelligent tutoring systems [9] [20], building automated
learning by teaching exercises [10], and automated testing and refinement of
educational technologies [5] [18].

Simulated learners differ from parameterized statistical models like the Ad-
ditive Factors, Performance Factors, and similar models [3][14] in that they fully
simulate the process of human learning, not just the patterns of performance
students exhibit over the course of learning. Simulated learners work in and
learn from educational technology through an inductive process of skill creation
and refinement. In this study we use simulated learners built with the Appren-
tice Learner Architecture, a modular framework for building simulated learners
and testing computational theories of human learning [8]. Unlike deep learning
based simulated learners [16], Apprentice Learner (AL) agents reach mastery
at roughly the same rate per opportunity as human learners, and make strong
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commitments to the theoretical underpinnings of learning without relying on
highly parameterized fitting of human data [21].

To fully deliver on their potential to aid in the testing of instructional tech-
nology, simulated learners must embody an accurate theory of learning which
can both reproduce the patterns of errors that humans produce over the course
of learning, and respond as humans do in different instructional conditions. Prior
work has assessed the fidelity of simulated learner models by comparing simu-
lated student learning curves of error rate by opportunity to the learning curves
of human learners. Macllelan [6] for example, presents simulated learners that
shows similar learning curve patterns as humans trained under both blocked and
interleaved instruction strategies. While this method has been helpful in guiding
cognitive architectural decisions in the past, it has a potential to hide nuances
in learners’ behavior (e.g., doing a step incorrectly in different ways) that are
also important for a simulation to model.

In this work, we demonstrate a method of assessing the accuracy of a sim-
ulated learner model not just by comparing overall learning curves, but also by
a novel method of splitting learning curves by error type. While prior work has
explored disaggregating learning curves by student subpopulations [11], our new
method of generating learning curves draws two distinctions, first, between er-
rors of omission whereby a learner’s request for help is an indication that they
do not know what do (Hint-Errors) and errors of commission where a student
performs an incorrect action (Incorrects). Second, we make a distinction within
Incorrects between actions on the wrong interface element, such as doing a step
in the wrong order (Selection-Errors), and entering an incorrect value on an
otherwise correct next step (Input-Errors). In the context of many tutoring sys-
tems, this distinction often appears as a difference between students putting any
answer in an inappropriately selected text field (e.g., one they may use later on
in the problem) and students putting an incorrect answer in an appropriately se-
lected text field (e.g., making an arithmetic error). Tutoring systems commonly
allow for multiple strategies, as is the case here, such that there may be multiple
appropriate selections at some states in the solution.

An additional difficulty with modeling humans with current simulated learn-
ers [9][6], is that they use and acquire only domain-specific knowledge and, per-
haps reasonably enough, they start with none. As such, they always begin learn-
ing with a 100% error rate. In principle, there is also a point at which human
learners possess zero knowledge of a domain, however in the classroom setting,
it is generally the case that most students have received at least some within-
domain instruction prior to working with an intelligent tutoring system (ITS).
Students also may possess some knowledge from previously learned domains that
may sometimes provide correct solutions in the current domain of study. For the
purposes of comparing the learning curves of humans and simulated learners, a
comprehensive history of student learning is rarely available, and thus simulated
learners must account for unobserved prior knowledge in their human counter-
parts. Weitekamp et. al. [21], have compared several methods for accounting for
prior knowledge in simulated learners. In addition to our error type analyses, we
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also incorporate several innovations on the best reported method of accounting
for prior knowledge from this work.

Ultimately, we propose to improve learning theory by evaluating whether
simulated learners that implement the computational theory of the Apprentice
Learner Architecture and account for prior knowledge, can accurately predict
(and thereby explain) the reduction in distinct types of errors produced by hu-
man learners; not just in overall error rate. Thus, we claim simulated learners
capable of matching human learners’ performance on all three of these error
types (Hint-Error, Selection-Error, and Input-Error) constitute stronger mod-
els of human learning than those only capable of matching human learners on
aggregate error-rates. Furthermore, we show that splitting the errors in these
ways can help generate insights for how to refine simulated learner models and
improve learning theory.

2 The Apprentice Learner Architecture

The simulated learners we employ throughout this work are implemented within
a modular framework for generating simulated learners called the Apprentice
Learner (AL) Architecture [8] [6]. A single AL agent is a simulation of a single
human learner, which learns as humans do through demonstrations and cor-
rectness feedback. AL agents can be trained interactively or, using an existing
ITS. The Apprentice Learner Architecture’s modular design consists of several
independent learning mechanisms that can be swapped in and out to test differ-
ent computational theories of human learning. Together, an AL agent’s different
learning mechanisms generate and refine production rules [1] that represent the
skills of the agent. The left-hand side or if-part of each production rule is refined
by when-learning and where-learning mechanisms, and the right-hand side or
then-part of each production rule is generated by a how-learning mechanism.

In a typical AL agent, the how-learning mechanism is the first learning mech-
anism to come into play during learning. This mechanism induces a sequence of
operations to explain how the action parameters (e.g. value) of a demonstrated
training example were produced. How-learning searches over a set of domain-
general operators such as addition, subtraction, multiplication, and division to
find a sequence of operations that will constitute the then-part of a produc-
tion rule capable of matching a demonstrated input. In this study we evaluate
learning in fraction arithmetic, which only necessitates searching over singular
unchained operators.

The where-learning mechanism is responsible for producing matching rules
associated with each skill that can bind to the interface elements in an ITS
interface associated with a particular use of a skill. For example, if a particular
skill involves multiplying two numbers and placing the result in a text box,
then the matching rule would need to bind to the text box (the selection) and
to the two interface elements (the arguments) from which the solution will be
computed. If there are multiple instances of a step in a problem then the where
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matching rule would need to match to all such instances. In this work we employ
a simple where-learning mechanism that simply recalls previously seen matches.

Lastly, the when-learning mechanism is responsible for learning when it is
appropriate for a skill to be applied. When-learning mechanisms are simply
binary classifiers, which take the current state of the problem and, for each skill,
evaluate each where match in the state for that skill to determine whether or not
the skill should be applied for that match. When-learning mechanisms generalize
from correct and incorrect instances of a skill being applied to determine which
features of a state indicate that a particular skill should be applied. In this study
we test two different classification algorithms for when-learning, which have been
used in prior studies with the Apprentice Learner [6] the Decision Tree algorithm
a common classification algorithm [2], and trestle which was used in prior work
to model the gradual process of concept formation from examples [7].

3 Method

We evaluate our simulated learners against human data collected from a class-
room study of a fraction arithmetic ITS. This dataset consists of the work of
117 students solving fraction addition and multiplication problems. Among the
addition problems some problems involved adding fractions with the same de-
nominator meaning the numerators could simply be added together, other prob-
lems involved adding fractions with different denominators, meaning a common
denominator had to be found. For the later case, the ITS enforced the ‘but-
terfly’ method where a common denominator is found by multiplying the two
denominators. All three problem types, Add-Different (AD), Add-Same (AS),
and Multiply (M), were solved on the same interface. This dataset was used in
prior work with simulated learners [6][21] and we have chosen to use it in this
work for the sake of comparison. The dataset is available as project 243 on the
PSLC DataShop [4]1.

In this study, we use a novel method of learning curve analysis that cat-
egorizes student errors into several different types. Following conventions from
DataShop and ITS research [4] [15], we frame student actions in terms of Selection-
Action-Input (SAI) triples and consider errors along each dimension of the SAI.
Selection is the interface element in the tutoring system that the student inter-
acted with during an attempted step, Action is what they did to that interface
element, and Input is the value associated with that action. For example, (num3,
UpdateTextArea, 5) is the SAI for placing 5 in the textbox labelled num3.

Our method for defining error types leverages the behavior graph of a CTAT
example-tracing tutor to annotate each student transaction with four new binary
values by comparing a student’s SAI against the problem step the transaction is
associated with. These four new values are “current selection” which indicates
whether a student worked on a correct selection for the next step, “current
input” which indicates if the input was correct, “downstream selection” which

1 https://pslcdatashop.web.cmu.edu/Project?id=243
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Fig. 1. An example of a fraction addition problem with different denominators (AD).
The students must indicate that the fractions must be converted and apply the conver-
sion using the ”butterfly” method (multiplying the denominators together, and cross
multiplying to find the new numerators). AS and M problems use the same interface
but without the intermediate conversion steps.

indicates whether the student’s choice of selection is correct for a later step in
the problem, and “downstream input” which indicates whether the input of the
student’s transaction would be correct on any step down stream in the behavior
graph from the current step. Table 1 shows a few common patterns of these new
values and how we group them together to get Selection-Errors and Input-Errors.
Several combinations have been omitted because they are either impossible or
not applicable to our data.

Table 1. Error Types by SAI Matching Pattern
Current Current Downstream Downstream Error
Selection Input Selection Input Type

1 1 0 0 Correct Response
1 0 0 0 Input-Error
0 0 1 0 Input-Error
0 1 1 0 Selection-Error
1 0 0 1 Selection-Error
0 0 1 1 Selection-Error
0 1 1 1 Selection-Error

In general, Selection-Errors occur whenever the student’s current selection is
wrong, but their input is applicable somewhere later in the problem, while Input-
Errors occur when the student’s input is incorrect for any step in the problem.
Our motivation for encoding these distinct types of errors was to determine
which characteristics of AL’s learning mechanisms differed from human learners.
Selection-Errors roughly correspond to issues of over-generality in the left-hand
side of production rules (i.e. skills). For example, if a student does the wrong
step in a problem then that is an indication that they do not fully understand
the conditions under which a particular skill should be applied. Input-Errors
can arise when the right-hand side of a production rule is incorrect, however,
they can also occur if a student applies the wrong skill for the correct next
step, in which case, the Input-Error may arise from two or more skills with
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underspecific left-hand sides. In the context of AL, this means that Selection-
Errors are definitely issues of under specific rules generated by the when- or
where-learning mechanisms. Input-Errors, on the other hand, could arise from
any learning mechanism, however, we hypothesize incorrect how-learning is most
likely to show up as an Input-Error. Lastly, Hint-Errors can occur if no learning
has occurred yet, or if when- or where-learning has generated skills with overly
specific left-hand sides.

Before working with an ITS, human learners generally have some prior ex-
posure to learning materials or instruction. However, when AL agents are first
instantiated they have no such prior knowledge. Weitekamp et al. [21] attempted
to estimate the number of prior practice opportunities per knowledge component
needed to get a set of simulated learners on par with their human counterparts
by extrapolating backwards with AFM [3]. In this work, we attempt to account
for prior knowledge opportunities more precisely by using a pool of simulated
learners trained on randomly generated problems. We estimate the number of
prior opportunities per KC by finding the opportunity at which the pool of
agents’ learning curves best align with the first opportunity rate of the human
data. To model each student individually we perturb the log odds of the target
error rate by the AFM student intercept, yielding an individualized number of
estimated prior opportunities for each knowledge component per student. This
estimate is then used to pretrain each agent before it practices on the set of
problems solved by its human counterpart.

Whereas [21] trained using only whole problems, we developed a new training
procedure capable of training individual knowledge components. For all of the
knowledge components of a particular problem type we train agents on random
problems up to the minimum number of estimated prior opportunities over the
constituent knowledge components. Any opportunities needed beyond this point
are trained by having the agent solve problems from start to finish as usual, but
only providing agents feedback on steps associated with knowledge components
that still need practice. This new pretraining procedure can be applied to any
step-based ITS with labelled KCs. [17].

4 Results

Figure 2 shows learning curves for each type of error compared across the hu-
man data and AL using the two different when-learning mechanisms Decision
Tree and trestle. In accounting for prior knowledge, we find different results
across the two methods. For the trestle condition the overall error rate on
the first opportunity is equivalent to the first opportunity error rate in the hu-
man data. For the Decision Tree, we find that AL has a first opportunity error
rate that is 4% lower than the human error rate – AL received on average too
many pre-training opportunities and ”over shot” the student state, indicating
an imperfection in the pre-training method that we discuss below. In both con-
ditions these results show an improvement over prior work which reported a first
opportunity error rate discrepancy of 11% on the same dataset[21].
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Fig. 2. Error-rate learning curves for each type of error (Total-Error, Hint-Error,
Selection-Error, Input-Error) plotted by dataset(Human, AL with Decision Tree, AL
with trestle). Note the difference in y-axis scale between Total-Error and the others

Overall, we find that AL agents with both when-learning methods learn more
rapidly by opportunity than the human students. The AFM slope averaged over
all KCs is 2.1 times greater than the humans for AL in both the Decision Tree
and trestle conditions. Additionally, In the Decision Tree and trestle con-
ditions the proportion of Input-Errors to Selection-Errors is roughly 1.1 whereas
the human students make these errors at a ratio of 1.7. Both AL and the hu-
man students make almost all of their Hint-Errors within the first 5 opportuni-
ties. Only 5% of the human errors in the first 5 opportunities are Hint-Errors,
however, trestle based agents make considerably more Hint-Errors in these 5
opportunities at 26%. The Decision Tree makes 8% Hint-Errors over the first 5
opportunities, which is 60% more Hint-Errors than in the human data.

5 Discussion

We have compared AL agents with two different when-learning configurations
to human data collected from a fraction arithmetic ITS. We have made this
comparison using our novel method for splitting error curves by error type. In
this section we discuss the implications of these results toward converging on
a more accurate computational model of human learning. We discuss potential
future features of the Apprentice Learner Architecture, and discuss how these
changes would affect the trends of AL agent learning curves split by error type.
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5.1 Accounting For Prior Knowledge

The pretraining method outlined in Weitekamp et. al [21] pretrained simulated
learners to within 11% of the human first opportunity rate. In this study, we have
used the same trestle when-learning strategy and dataset, but have employed
a new method for accounting for prior knowledge in our simulated learners which
matched the human first opportunity rate to within less than 0.1%. Our strategy
was however, not quite as successful with the other agent configuration, which
used the Decision Tree when-learning mechanism. This remaining discrepancy
between AL and the human data may have to do with the granularity by which
we can estimate prior opportunities for each knowledge component. The first op-
portunity error rate for some of the knowledge components in the human data is
well over 50%, but for most knowledge components the pool of AL agents trained
on random fraction arithmetic problems take only 4 or fewer opportunities on
average to learn beyond 50% error. This means that our pre-training strategy
is still fairly sensitive to rounding. When finding the best whole number of op-
portunities to pretrain to get the desired first opportunity error rate, rounding
to the nearest opportunity can lead to large discrepancies since the difference in
error rates between early opportunities is large.

5.2 Learning Curve Comparison

The split error curves in all three conditions indicate that our AL agents’ pace
of performance improvement by opportunity is much higher than the human
students. Thus, we would expect any method for lowering the amount of learning
per opportunity to improve the fit of our simulated learners to human data.
Additionally, slowing down our agents’ learning in this way would alleviate some
of the rounding issues we have had with estimating prior knowledge since the
learning curves would be less steep overall. The issue remains of determining how
learning should be slowed. Recall that a simulated learner embodies a theory of
human learning, thus our objective should not simply be to make our learners fit
better to human data, but to do so in a theoretically and empirically grounded
manner in order to converge on a model of human learning that is predictive
across a wide range of domains and conditions.

On the empirical side, our learning curves split by error type provide a few
insights concerning our three configurations of AL agents. Firstly, we find that
the AL agents that employed trestle made considerably more Hint-Errors than
human students early in the learning process. For an AL agent a Hint-Error is
committed when it encounters a problem state in which it believes that none of
its learned skills are applicable. When this occurs, AL agents ask for a demon-
stration of the next correct step. Hint-Errors generally occur early on in learning
when skills either do not exist or have induced when and where conditions that
are overly specific to previously seen training examples. In other words, Hint-
Errors occur either when there is no appropriate how function induction for the
then-part or when the preconditions for applying the correct skill for a step have
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not yet generalized to the point that they have become inclusive of all potential
correct uses of that skill.

One capability which AL agents currently lack that may reduce the rate of
Hint-Errors and increase the rate of Incorrect responses is the ability to make a
plausible inference based on ”weak methods” for more general problem solving
[12] or by guessing, perhaps based on past response frequency. Human students
sometimes rely on weak methods or guessing in the absence of strong hypotheses
for what to do next [19]. Plausible inference may be informed by prior knowledge
and involve actually taking actions similar to those in prior learned domains, or
may even be slightly superstitious, (i.e., this seems like the kind of problem
where the answer is 0) or based on interface heuristics (i.e., I usually operate on
things that are next to each other). Further investigations are needed to select
from or derive weak methods for plausible inference.

Another method for reducing Hint-Errors would be to use a when-learning
mechanism that generalizes heavily from positive examples or incorporates nega-
tive feedback conservatively so that skills tend to be applied in spite of negative
feedback. The Decision Tree appears to have this characteristic more so than
trestle.

One approach to plausible inference is to incorporating a memory mecha-
nism. One weak method for plausible inference is to propose the action with the
highest current memory activation (e.g., because of recency or history frequency
of repetition or spacing). The AL agents tested in this work have no current
means for such inference, and correspondingly, no means for forgetting skills or
inferences. AL agents could incorporate methods of forgetting prior examples,
features of problem states, induced internal states, or whole skills. While most
existing literature on memory mechanisms pertains to the effects of memory
on learning facts [1], it may be that a model like Anderson’s ACT-R model of
practice spacing and retention [13] is applicable to skills as well as facts. Overall
a memory mechanism would likely slow down the learning rate of AL agents,
although the effects of a memory mechanism on the proportion of Hint-Errors to
Incorrect responses would likely depend on the implementation. The inclusion
of a model of forgetting entire skills would likely further increase the number
of Hint-Errors, however the spurious activation of other skills may make up for
this and produce more Incorrect responses.

5.3 The Relative Rate of Input and Selection Errors

Another empirical result from our split learning curves is that among Incorrect
responses human learners consistently make a larger proportion of Input-Errors
than Selection-Errors over the course of learning. By contrast, AL agents con-
sistently make these errors at about the same rate. One likely explanation for
this difference is that the human students’ Input-Error learning curve includes
instances of arithmetic mistakes when computing the right-hand side operations
of skills. Currently, AL agents employ domain general operator functions to per-
form arithmetic and thus are incapable of making this kind of error. It may be
possible to further split out these errors as a separate type of error with their
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own learning curve. One possible method for separating out these sorts of errors
would be to use the methods employed by AL’s how-learning mechanism in the
error type labelling process to find errors which cannot be explained by applying
weak methods on the values in the interface.

5.4 Other Uses of Learning Curve Splitting

Our method of splitting learning curves likely has uses for student modeling
outside of the realm of simulated learners. Analyzing the rate of Selection-Errors
and Input-Errors separately may help measure the efficacy of interventions baked
into ITSs. For example, CTAT tutoring systems often correct students when they
are working on the wrong step of a problem (i.e., a Selection-Error). Adding
elaborative feedback to these messages to explain what the correct next step is
and why it is correct may improve ”if” and ”then” type learning differently. The
relative effect of such an intervention on these two types of learning could be
measured directly with split learning curves to help refine feedback messages.

In this study we have grouped several distinct patterns into just two groups,
but there may also be uses for splitting errors further. For example, one pattern
we encode picks out cases where students have provided a correct answer for
a later step. Analyzing the rate of this kind of error may help catch instances
where a tutoring system arbitrarily constrains the order that steps can be taken.
It may also help identify cases where students are restricted from providing a
final answer produced through mental steps.

6 Conclusion

Just as theoretical physics complements experimental physics we suggest here,
a need for more computational learning science to complement experimental
learning science. Simulated learners are computational theories of human learn-
ing which model inductive human learning processes by working in and learning
from ITSs. Evaluating and refining simulated learners as computational theories
requires measuring the accuracy with which simulated learners match the specific
learning behaviors of humans. In this work, we have presented two new methods
to help make this comparison more precise. We have developed an improvement
on previous methods[21] for accounting for prior knowledge in simulated learn-
ers, and we have developed a new method of splitting learning curves by error
type.

We have employed these two methods in a comparison of simulated learners
built with the Apprentice Learner Architecture and found that when prior knowl-
edge is accounted for, AL agents learn about twice as fast as human learners,
commit more initial Hint-Errors than humans, and produce a lower proportion
of Input-Errors to Selection-Errors. Finally, we have discussed several potential
refinements of our current model based on these results such as alterations to
when-learning mechanisms and the inclusion of mechanisms for forgetting, and
the usage of weak methods that produce plausible inferences or guesses.
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