
Decomposed Inductive Procedure Learning:
Learning Academic Tasks with Human-Like Data Efficiency
Daniel Weitekamp,1 Christopher MacLellan, 1 Erik Harpstead, 2 Kenneth Koedinger2

1 Georgia Institute of Technology, Atlanta, GA 30332
2 Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Human learning relies on specialization—distinct cognitive
mechanisms working together to enable rapid learning. In con-
trast, most modern neural networks rely on a single mecha-
nism: gradient descent over an objective function. This raises
the question: might human learners’ relatively rapid learning
from just tens of examples instead of tens of thousands in data-
driven deep learning arise from our ability to use multiple spe-
cialized mechanisms of learning in combination? We inves-
tigate this question through an ablation analysis of inductive
human learning simulations in online tutoring environments.
Comparing reinforcement learning to a more data-efficient 3-
mechanism symbolic rule induction approach, we find that de-
composing learning into multiple distinct mechanisms signifi-
cantly improves data efficiency, bringing it in line with human
learning. Furthermore, we show that this decomposition has a
greater impact on efficiency than the distinction between sym-
bolic and subsymbolic learning alone. Efforts to align data-
driven machine learning with human learning often overlook
the stark difference in learning efficiency. Our findings sug-
gest that integrating multiple specialized learning mechanisms
may be key to bridging this gap.

A key idea within the learning sciences, popularized by
Anderson’s ACT-R theory (2013) and expanded upon by
others (Koedinger, Corbett, & Perfetti, 2012), is that hu-
man performance is enabled by independent knowledge
components—individual facts, skills, or principles—that
must be understood and retained to exhibit mastery of higher-
level capabilities. For instance, addition tables from 1 to 10
comprise 10∗(10+1)

2 = 55 facts. More complex procedures,
such as adding two large numbers, may require several addi-
tional skills like aligning numbers, adding over columns, and
carrying the tens-digits of partial sums. More advanced capa-
bilities require mastery of even more interdependent knowl-
edge components which may build upon these.

Intelligent tutoring systems (ITS) are educational tech-
nologies that mimic one-on-one tutoring interactions by pro-
viding highly adaptive step-by-step instructional support de-
signed to aid the acquisition of unmastered knowledge com-
ponents. When students practice skills in these controlled
learning environments, their rate of learning proves to be re-
markably quick and astonishingly consistent between individ-
uals (Koedinger, Carvalho, Liu, & McLaughlin, 2023). Data
from ITSs (Koedinger et al., 2010) illustrate that students typ-
ically master skills in about a dozen practice opportunities or
fewer—orders of magnitude faster than modern data-driven
machine learning (ML) approaches, such as reinforcement

learning, which relies on gradient-descent and often require
tens of thousands to millions of examples.

This work investigates three learning mechanisms that
have emerged from efforts to simulate humans’ inductive
learning of academic tasks. Simulated learner systems like
Sierra (VanLehn, 1990), SimStudent (Matsuda, Cohen, &
Koedinger, 2015), the Apprentice Learner (AL) architecture
(Maclellan, Harpstead, Patel, & Koedinger, 2016), and AI2T
(Weitekamp, Harpstead, & Koedinger, 2024) have success-
fully learned dozens of domains, acquiring skills directly
from ITSs and similar environments, and in some cases, di-
rectly from human instruction. These systems have not only
replicated the remarkable rate of learning observed in humans
(Maclellan et al., 2016; Weitekamp, Harpstead, MacLel-
lan, Rachatasumrit, & Koedinger, 2019), but also produce
patterns of error that mirror those found in student data
(VanLehn, 1990; Weitekamp, Ye, Rachatasumrit, Harpstead,
& Koedinger, 2020).

The central question of this work is: why have cognitive
systems succeeded at replicating rapid human learning, while
neural network approaches lag behind by several orders of
magnitude? While symbolic learning mechanisms in simu-
lated learners certainly play a role, we show that the key fac-
tor to their efficiency is the integration of multiple function-
ally distinct learning systems. Through an ablation analysis,
we compare a single learning mechanism (either neural re-
inforcement learning or a symbolic learning approach) with
progressively more decomposed learning that uses two, and
finally, three mechanisms, as used in prior simulated learn-
ers. We coin the name Decomposed Inductive Procedure
Learning (DIPL) to refer to this common multi-mechanism
approach.

Across two ITS tasks, we show that each stage of
ablation—from a single mechanism learning to DIPL’s 3-
mechanism learning—yields several orders of magnitude of
learning efficiency improvement. We hypothesize that these
gains arise from how different mechanisms, each with a well-
defined role, simplify error attribution and reduce the to-
tal computational complexity of knowledge induction. This
work highlights the vast benefits that theory-driven cognitive
modeling can offer to the fields of cognitive science and ma-
chine learning. In an odd divergence from historical defini-
tions (VanLehn, Ohlsson, & Nason, 1994), large language
models (LLMs) have inspired a wave of so-called “simu-



Figure 1: Decomposition from 1-mechanism learning, like
RL, that maps states to actions to DIPL’s 3-mechanism learn-
ing. A 2-mechanism system bridges the difference and uses
how-learning but combines where- and when-learning.

lated learners” that generate responses but do not actually
learn (Käser & Alexandron, 2024). In response, we high-
light the fundamental advantage of a cognitive theory-based
approach over simple gradient descent based learning in ar-
tificial neural networks. Our direct comparison between re-
inforcement learning and simulated learners suggests that an
essential component of this advantage lies in how several spe-
cialized mechanisms of learning cooperate to achieve human-
like learning efficiency.

Related Work

Large Language Models

Artificial neural systems have come a long way in perform-
ing academic tasks such as mathematics. For instance, LLMs
have succeeded on challenging word problems (Bubeck et al.,
2023) from datasets like MATH (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021). In 2023, GPT models trained
step-by-step have demonstrated 78% accuracy on the MATH
dataset (Lightman et al., 2023), and yet higher accuracies
have been achieved with several recent models on several
benchmarks (Team et al., 2024). However, since these mod-
els were trained on a quantity of learning experiences many
orders of magnitude greater than a human would experience
in a lifetime, their decidedly data-driven developmental pro-
cess offers little insight into human learning. Other mis-
alignments of deep learning with human learning include the
phenomena of catastrophic forgetting (McCloskey & Cohen,
1989), where new training causes models to forget capabil-
ities learned from previous training instances. Additionally,
strong evidence has emerged showing that LLM’s problem-
solving capabilities are largely memorized and not in fact
a result of effective generalization from data. For instance,
Mirzadeh et. al (2024) show that LLMs’ performance drasti-
cally declines when questions from the GSM8K dataset have
their numerical values replaced with different values or if ad-
ditional distractor clauses are added.

Speed-up Learning in Cognitive Systems
A shortcoming of many attempts to model learning in sym-
bolic cognitive systems has been the over-reliance on knowl-
edge engineering and “learning” by planning with hard-
coded, and often domain specifc, prior knowledge representa-
tions. Much work in logic programming (Manhaeve, Duman-
cic, Kimmig, Demeester, & De Raedt, 2018) and a great deal
of early work in cognitive architectures, like SOAR (Laird,
2019) and ACT-R (Ritter, Tehranchi, & Oury, 2019), can be
held to this criticism. No doubt, models of learning ought to
represent and build upon prior knowledge. Yet, many cogni-
tive systems neglect important aspects of learning by starting
with knowledge representations that are hard-coded to plan
toward target tasks. Laird, Lebiere, and Rosenbloom (2017)
have presented the view that learning is only “a side effect of
performance.” This claim evokes the principle of learning-by-
doing, yet is greatly misaligned with the realities of learning
in an academic setting. “Learning” for these systems is typi-
cally characterized as a cognitive speed-up achieved by repur-
posing prior knowledge to shortcut later computational effort.
In an academic setting, one would not consider a human stu-
dent to have learned if they could “perform” without errors in
advance of instruction. The limited focus of many cognitive
systems on error-free speed-up learning (Neves, 1985) over-
looks this important inductive component of human knowl-
edge formation that enables the rapid, yet initially error-prone
acquisition of entirely new capabilties through instruction and
practice.

Inductive Simulated Learners
VanLehn’s (1990) Sierra is an early inductive simulated
learner (SL). Experiments with Sierra demonstrated that in-
ductive learning underlies the acquisition of early math-
ematical skills, replicating and explaining more mistakes
in subtraction problem-solving datasets than prior case-by-
case analyses. Later efforts with SimStudent and the Ap-
prentice Learner (AL) architecture have empirically repro-
duced student learning curves across dozens of ITS domains
(MacLellan & Koedinger, 2020). Instead of fitting to student
data, these systems learn to solve problems from the same
ITS interactions human students experience, generating step-
by-step solutions that improve with practice. (Maclellan et
al., 2016; Weitekamp et al., 2020). These simulated learners
induce production rules from ITS examples and correctness
feedback—initially producing errors, but are rapidly restruc-
tured towards mastery through supervised practice. AI2T
(Weitekamp et al., 2024) extends this principle, letting un-
trained users teach it interactively. Notably, half of AI2T
users successfully trained it to exhibit 100% correct and com-
plete behavior on mathematical tasks with small user-selected
training sequences of just 14-21 problems.

Decomposed Inductive Procedure Learning
SimStudent and the Apprentice Learner induce production
rules using a combination of three learning mechanisms that



independently determine how actions are taken, where it is
possible to take actions, and when (i.e. under what cir-
cumstances and in what order) those actions should be ap-
plied to execute a target behavior. Sierra and AI2T in-
clude a fourth mechanism for inducing the hierarchical pro-
cess by which higher-level tasks are divided into subtasks.
This process-learning mechanism arranges production rules
into hierarchical task networks (Erol, Hendler, & Nau, 1994)
that control how high-level tasks are broken down into par-
tially ordered subtasks. Our notion of Decomposed Induc-
tive Procedure Learning (DIPL) encompasses both these 3-
and 4-mechanism approaches. However, for our evaluations,
we focus on 3-mechanism DIPL, which includes only how-
learning, where-learning, and when-learning.

While multi-mechanism learning approaches, such as the
actor-critic paradigm (Konda & Tsitsiklis, 1999), are com-
monplace in AI, DIPL’s learning mechanisms cooperate in a
uniquely modular, localized fashion. Unlike most actor-critic
methods, DIPL’s learning mechanisms do not apply glob-
ally; instead, each is instantiated separately for every learned
skill (i.e., production rule). Within the induction of a single
skill, these mechanisms cooperate in such a way that each
mechanism simplifies learning for the others. Rather than
relying on a single global mechanism like gradient descent,
each instance of each individual learning mechanism serves
a distinct, well-defined role—acquiring specific generaliza-
tions for individual skills. Each skill, in turn, is built up from
these induced pieces and is responsible for performing partic-
ular kinds of actions. As a model of learning, DIPL’s division
of capabilities into individual skills aligns with the notion of
knowledge components, expressed as production rules that
are refined over time within an evolving expert system.

How-Learning
How-learning determines how skills apply actions using an
abductive process. Prior simulated learners have generally
implemented how-learning with a search process that com-
poses primitive domain-general prior-knowledge functions
(like arithmetic functions and string operations) to reproduce
observed actions. This search typically produces multiple
candidate compositions that reproduce the worked example,
some of which may be incorrect. Among the candidate com-
positions that reproduce a worked example, the most parsi-
monious (having the fewest operations and arguments) is cho-
sen. The chosen explanation is generalized by replacing the
constants in the grounded composition with variables. For
instance, OnesDigit(7+5) in Figure 2 may be generalized to
depend upon two argument variables Arg0=Var(TextField)

and Arg1=Var(TextField) which match to any TextField type
interface elements.

Prior implementations of how-learning have composed
primitive functions in an iterative-deepening fashion
(Matsuda et al., 2015). At each deepening the composition
depth is increased by composing primitive functions with
prior compositions, for instance, two depth=1 compositions
Add(a,b), and Subtract(a,b) could be composed with Di-

Figure 2: How-learning explanations for worked examples in
fractions and multi-column addition. Of the several explana-
tions, some may be correct (green) or incorrect (red).

vide(a,b) to produce a depth=2 composition Divide(Add(a,b),
Subtract(c,d)). This search process explodes combinatorially,
so search depths are typically limited to 1 to 3. A method
that we have come to call Set Chaining optimizes this
search considerably. Set Chaining executes primitive prior
knowledge functions in waves, using every combination
of unique values from the previous wave as arguments in
the next. By keeping a lightweight record of every way
each unique value is produced in each wave, compositions
can be built by tracing back from the goal value, once it is
found. This method cuts down on combinatoric search and is
amenable to multithreaded implementations.

Prior work has also used instructional annotations, like the
arguments of the true composition (Matsuda et al., 2015) and
even natural language hints (Weitekamp, Rachatasumrit, Wei,
Harpstead, & Koedinger, 2023), to guide the explanation pro-
cess and reduce the amount of combinatorial search.

Where-learning
Where-Learning discovers matching patterns to determine
where skills can be applied. While how-learning is respon-
sible for producing the operational generalizations within
skills, where-learning builds spatial generalizations that spec-
ify their applicable contexts. In a multi-column addition task
(Figure 3), where-learning could generalize a skill for com-
puting the one’s digit of a partial sum so that it applies across
columns. The patterns it learns are expressed using argu-
ment variables (e.g., Arg0 and Arg1 from the how-learning
example above), along with a single selection variable (e.g.,
Sel=Var(TextField)) that matches the interface element to
act upon.

The learned where-part pattern consists of a logical state-
ment, expressing necessary conditions and spatial relation-
ships between variables. The pattern produced from an ini-
tial worked example is typically highly constrained and may
only bind to a limited set of selections and arguments. Subse-
quent examples can generalize the where-part by generaliz-
ing or removing the relations that comprise it. How-learning
has a supporting role in identifying the sets of arguments that



Figure 3: An example of a where-part pattern generalized to
act across columns in multi-column addition.

where-learning generalizes from. How-learning attempts to
explain each new worked example using existing skills’ how-
part compositions. If there are any candidate explanations,
the one with arguments that would make the minimal change
to an existing skill (quantified by a score that measures struc-
ture similarity) is used for where-part generalization. Other-
wise, how-learning generates a new skill from the example.

Where-part generalizations can also match to neighbors
and parents of the selections and arguments, to identify their
placement within hierarchical representations. For instance,
Li et. al. (Li, Matsuda, Cohen, & Koedinger, 2015) employed
representation learning in SimStudent, to learn and match to
hierarchies of expressions, terms, coefficients, and variables
within algebra equations.

When-Learning
When-learning identifies the contexts and order in which
skills should be applied. The when-part of a skill consists
of pre-conditions that define its applicability. When-learning
is typically implemented using binary classification methods
that output symbolic relational expressions. Prior work has
used inductive logic programming, decision trees, and incre-
mental concept learning approaches (Matsuda et al., 2015;
Maclellan et al., 2016). In any given state, the learned when-
part preconditions distinguish whether a particular candi-
date application of a skill matched by the where-part pattern
should be applied.

When-learning uses positive and negative examples of can-
didate skill applications in particular problem states. Where-
part processing assists when-learning by associating each
example triple of (state, action, reward) with a particular
skill, selection, and set of arguments. This allows when-
learning to construct when-parts as variablized concepts con-
sisting of relations that express features in the state as they
relate to the selection (e.g. Sel) and arguments (e.g. Arg0,
Arg1) instead of as they relate to particular interface ele-
ments. This enables generalization across spatially distinct
instances of the same skill. For instance, the when-part in
the fraction example in Figure 4 includes a literal relation
Equals(Arg0.below.value, Arg1.below.value) which refer-
ences the values of the elements below Arg0 and Arg1.

Prior work has used FOIL (Quinlan & Cameron-Jones,

Figure 4: Positive and negative examples of an AddNum skill
in fraction addition, and an Add2 skill in Multi-Column ad-
dition. Partial when-parts that accept the positive examples
but reject the negative example are shown expressed with re-
lational features generated by relative featurization.

1995), an inductive logic programming method, to learn con-
cepts with relational constraints like those above. FOIL
searches for and combines new literals like Below(Arg0, A)

expressed in terms of source variables like Arg0, or invented
variables like A. Searching for such statements can be com-
putationally demanding. In this work we introduce a stream-
lined means of restating features in the problem state relative
to the selection and argument variables. The shortest path
through adjacency relationships is found between interface
elements using the Bellman-Ford algorithm (Bellman, 1958).
Then each feature in the state is relabeled with the shortest
path from the selection or arguments (in the dot-notation of
Figure 4). This method of relative featurization also allows us
to keep the when-learning classifier independent of relational
feature generation.

Decomposing from RL to DIPL
Reinforcement Learning (RL) learns policies π(s) → a, di-
rectly or indirectly, that map states to actions to maximize re-
ward over task episodes. RL can maximize overall reward in
environments where feedback signals are delayed over states,
or even when there are non-deterministic actions. As RL al-
gorithms have evolved and come to rely largely on deep learn-
ing, they have shown successes at challenging games (Mnih
et al., 2013) and robotics tasks (Schulman, Wolski, Dhari-
wal, Radford, & Klimov, 2017). They have even become a
go-to choice in deterministic procedural domains that require
symbolic manipulation, such as theorem proving (Kaliszyk,
Urban, Michalewski, & Olšák, 2018), and for learning math-
ematical tasks such as geometry (Xiao & Zhang, 2023), and
early K-12 mathematics like fractions and long arithmetic
(Poesia, Dong, & Goodman, 2021). However, these deep
learning approaches typically require at least thousands of ex-
amples and generally learn by attempting tasks in specially



formatted environments with pre-specified action spaces.
By comparison, DIPL-based induction is about as data-

efficient as human learning (Maclellan et al., 2016) and does
not require a pre-specified action or state space (MacLellan
& Gupta, 2021). New “actions” are learned through the in-
duction and generalization of skills with how- and where-
learning. When-learning then determines in what order and
contexts those skills should be applied. By analogy to RL’s
choice of actions via a global policy π(s)→ a DIPL generates
actions with multiple symbolic pieces When(s,Where(s))→
How(Where(s)) = a.

Mathematical and algorithmic complexities notwithstand-
ing, deep RL generally relies on gradient descent to tune its
behaviors. In our ablation analysis we will decompose from
RL’s 1-mechanism learning to DIPL’s 3-mechanism learn-
ing by systematically introducing additional learning mech-
anisms. Between RL and DIPL a 2-mechanism system em-
ploys how-learning, but only a single Left-hand-side (LHS)
learning mechanism is used to generate correct sets of selec-
tions and arguments for producing actions.

Task Domains
We build on the RL gym environments used by MacLellan
and Gupta (2021) for two different ITS domains: (1) A frac-
tion arithmetic tutor (Figure 5) that randomly selects among:
adding same denominator fractions, different denominator
fractions, and multiplying fractions and (2) a multi-column
arithmetic tutor that teaches 3-digit addition (Figures 3,4). In
both domains, agents can request worked examples (demos),
and receive immediate reward signals (1 for correct, -1 for
incorrect) on attempted actions. Since action spaces consist
only of, checking boxes, placing numbers in fields, or press-
ing the ‘done’ button, there are finite primitive actions for an
RL system to select from.

In the fractions tutor, agents must perform the correct frac-
tion arithmetic procedure step-by-step (multiplying, adding,
or converting then adding) based on the two starting fractions
and the operator. In the RL-Gym wrapper for this environ-
ment, the agent is able to fill in each of 6 number fields with
the numbers 1-450, fill in the ‘check convert’ field with an
“x” or press the done button, for a total of 2,702 unique ac-
tions. The multi-column addition domain (see Figures 3, 4)
has 7 fields that can be filled with the digits 0-9, plus a done
button for a total of 71 unique actions. In this domain, the
agent must compute the sum of two 3-digit numbers by com-
puting each partial sum in right-to-left order by placing the
ones digit and then carrying the tens-digit when necessary. In
both domains, the state is encoded into a vector with 0.0 or
1.0 representing whether each element is present using one-
hot encoding (size 2,000 in fractions and 240 in multi-column
addition). The one-hot encoding maps each unique interface
element-attribute pair to a slot in the state vector.

The non-RL-based agents instead experience the state in its
original object-based representation, where each object has a
unique identifier, type, position, shape, and value. Addition-

Figure 5: Fraction arithmetic tutoring system for teaching
multiplying and adding fractions. Learner insert an ’x’ to the
’check convert’ field if the fraction must first be converted.

ally, no predefined action space is provided to these agents.
Instead, they learn how to produce actions by applying how-
learning to the on-demand worked example demos. These
agents are instantiated with the primitive domain-general
prior knowledge functions necessary to compose how-parts
for each task: Add(a,b) and Multiply(a,b) for fractions
and OnesDigit(a), TensDigit(a), Add3(a,b,c), Add(a,b) for
multi-column addition. In multi-column addition, extrane-
ous how-learning explanations are common, so we aid how-
learning by annotating each demo with its arguments. We do
not provide these annotations for fractions. In the fractions
domain, we provided a single feature function Equals(a,b),
enabling the agent to identify equal values, which is neces-
sary for learning to check for equal denominators.

Ablation Analysis
We apply two RL approaches: an off-policy Deep-Q-Network
(DQN) model (Mnih et al., 2015) and an on-policy Proximal
Policy Optimization (PPO) model (Schulman et al., 2017).
PPO has become a popular RL approach for its relative sta-
bility, data-efficiency, and consistent convergence without hy-
perparameter tuning. We additionally train agents with or
without automatically provided worked examples. In the lat-
ter case (indicated by “+Demos”), each incorrect action is
followed by training on the current step’s demo worked ex-
ample. This mimics the capability of DIPL-based simulated
learners to request demos when no next action can be pro-
duced. Unfortunately, this method only works with the DQN
models, as there is no simple method for training on-policy
methods like PPO with actions not produced by its current
policy. All models were implemented using OpenAI’s stable
baselines library and were trained for 500,000 timesteps. For
a symbolic comparison, we additionally train a decision tree
using the “+Demos” training modality.

Our 2-mechanism model uses a Set Chaining how-learning
mechanism to learn individual skills, but only a single Left-
Hand-Side (LHS) learning mechanism that predicts where
and when those skills should be applied. The LHS-learning
uses a decision tree as a multi-class classifier that predicts the
selection and arguments for the correct next action from fea-
tures of the problem state.

Finally, we utilize a DIPL-base agent via our re-
implementation of the Apprentice Learner (AL) Architecture.
Set Chaining is used for how-learning. Where-learning uses



Fractions MC Addition

1-mech
PPO Not Converge 30,642
DQN+Demos 11,315 9,496
DT+Demos 1,944 7,816

2-mech How+LHS 17 270

3-mech
DIPL
(no rel. feat.) 33 38

DIPL 20 19
Human Data ∼9-14 N/A

Table 1: Number of problems before < 10% average error.

a simple implementation that only recalls sets of selections
and arguments from past examples. Finally, when-learning is
achieved with a decision tree. We train both with and with-
out relative featurization to illustrate the effects of utilizing
where-part processing in when-learning.

Results
Our results are summarized in Table 1 and select learn-
ing curves are shown in Figure 6. The DQN models con-
verged only in the ”+Demos” condition. PPO successfully
converged only in multi-column addition. Among the RL
methods, the “DQN + demos” approach achieved the best
data efficiency up to the <10% error mastery point requir-
ing about 10,000 problems in each task. Decision trees were
more data-efficient than the RL methods, but still required
1,944 problems in fractions and 7,816 problems in multi-
column addition. The 2-mechanism model showed a dra-
matic improvement in data efficiency, taking just 17 problems
to master fractions but 270 for multi-column addition. The
3-mechanism DIPL model by contrast mastered both in 20
problems or less. Turning off relative featurization resulted
in a 13-19 problem deterioration of data efficiency. We ad-
ditionally include human data collected by Patel, Liu, and
Koedinger (2016) using the fractions ITS. We shift this data
by 6 problems to align the initial 30% error rate exhibited by
the most efficient SL, leading to an adjusted mastery inter-
cept of around 9-14 problems. The DIPL agents and humans
show similar initial learning rates, but the DIPL agents im-
prove more rapidly beyond the mastery threshold up to less
than 1% error after about 130 problems.

Discussion
Data-Efficiency Our 1-mechanism models cover only a
small number of RL training approaches yet are fairly rep-
resentative of the data-efficiency of RL. One contribution to
inefficiency is that the RL action models consist of pick-
ing numbers instead of computing them (similar to how
LLMs approach math). However, in similar experiments
in which RL agents were given domain-specific primitive
actions equivalent to what an SL would induce through
how-learning, training still required thousands of episodes
(MacLellan & Gupta, 2021).

The decision tree’s relatively better data efficiency demon-

Figure 6: Log-scale x-axis learning curves, for DQN-Demos,
How+LHS, DIPL annotated with 10% error intercept. Frac-
tion domain includes human curves (grey) offset to account
for unobserved learning opportunities.

strates an advantage of symbolic versus sub-symbolic learn-
ing. However, learning decomposition proved to be more
essential to achieving human-like data efficiency. In the
2-mechanism model, how-learning helped produce near
human-like efficiency for fractions, but in multi-column tu-
tor a further decomposition into where- and when-learning
was essential. Where-learning lets when-learning spatially
generalize across multiple uses of the same skill (e.g., across
columns).

Further Decomposition We may consider if yet more de-
composition could produce greater data efficiency. For in-
stance, HTN induction in VanLehn’s (1990) Sierra, and the
process-learning mechanism in AI2T may simplify the role
of when-learning. When situated within an HTN, skills can
be ordered explicitly within methods that dictate the steps for
accomplishing higher-level tasks. This may reduce the role
of when-learning so that it only needs to learn simple precon-
ditions that gate the applicability of methods instead of also
controlling the order in which primitive actions are applied.
Generalizing this approach to work beyond the limited do-
mains on which it has been applied may be a path toward yet
greater data efficiency than we achieved here.

Conclusion

The rise of data-driven machine learning and LLMs has in-
spired a fixation on replicating human performance while
overlooking the vast gap in data efficiency between data-
driven machine learning and human learning, which is orders
of magnitude more data efficient. This work demonstrates
how cooperation between specialized learning mechanisms is
a potential path to bridging that gap—enabling learning from
tens of examples instead of tens of thousands.



References

Anderson, J. R., & Schunn, C. D. (2013). Implications of
the act-r learning theory: No magic bullets. In Advances in
instructional psychology, volume 5 (pp. 1–33). Routledge.

Bellman, R. (1958). On a routing problem. Quarterly of
applied mathematics, 16(1), 87–90.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., . . . others (2023). Sparks of ar-
tificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun,
H., Kaiser, L., . . . others (2021). Training verifiers
to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). Semantics for
hierarchical task-network planning. Citeseer.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S.,
Tang, E., . . . Steinhardt, J. (2021). Measuring mathemati-
cal problem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Kaliszyk, C., Urban, J., Michalewski, H., & Olšák, M.
(2018). Reinforcement learning of theorem proving. Ad-
vances in Neural Information Processing Systems, 31.

Käser, T., & Alexandron, G. (2024). Simulated learners in
educational technology: A systematic literature review and
a turing-like test. International Journal of Artificial Intelli-
gence in Education, 34(2), 545–585.

Koedinger, K. R., Baker, R. S., Cunningham, K., Skogsholm,
A., Leber, B., & Stamper, J. (2010). A data repository
for the edm community: The pslc datashop. Handbook of
educational data mining, 43, 43–56.

Koedinger, K. R., Carvalho, P. F., Liu, R., & McLaughlin,
E. A. (2023). An astonishing regularity in student learning
rate. Proceedings of the National Academy of Sciences,
120(13), e2221311120.

Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The
knowledge-learning-instruction framework: Bridging the
science-practice chasm to enhance robust student learning.
Cognitive science, 36(5), 757–798.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms.
Advances in neural information processing systems, 12.

Laird, J. E. (2019). The soar cognitive architecture. MIT
press.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A stan-
dard model of the mind: Toward a common computational
framework across artificial intelligence, cognitive science,
neuroscience, and robotics. Ai Magazine, 38(4), 13–26.

Li, N., Matsuda, N., Cohen, W. W., & Koedinger, K. R.
(2015). Integrating representation learning and skill learn-
ing in a human-like intelligent agent. Artificial Intelligence,
219, 67–91.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., . . . Cobbe, K. (2023). Let’s verify step by step.
arXiv preprint arXiv:2305.20050.

MacLellan, C. J., & Gupta, A. (2021). Learning expert
models for educationally relevant tasks using reinforce-
ment learning. International Educational Data Mining So-
ciety.

Maclellan, C. J., Harpstead, E., Patel, R., & Koedinger, K. R.
(2016). The apprentice learner architecture: Closing the
loop between learning theory and educational data. Inter-
national Educational Data Mining Society.

MacLellan, C. J., & Koedinger, K. R. (2020). Domain-
general tutor authoring with apprentice learner models. In-
ternational Journal of Artificial Intelligence in Education,
1–42.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., &
De Raedt, L. (2018). Deepproblog: Neural probabilistic
logic programming. Advances in neural information pro-
cessing systems, 31.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015).
Teaching the teacher: Tutoring simstudent leads to more
effective cognitive tutor authoring. International Journal
of Artificial Intelligence in Education, 25(1), 1–34.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic inter-
ference in connectionist networks: The sequential learn-
ing problem. In Psychology of learning and motivation
(Vol. 24, pp. 109–165). Elsevier.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., & Farajtabar, M. (2024). Gsm-symbolic: Under-
standing the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., . . . others (2015). Human-
level control through deep reinforcement learning. nature,
518(7540), 529–533.

Neves, D. M. (1985). Learning procedures from examples
and by doing. In Ijcai (pp. 624–630).

Patel, R., Liu, R., & Koedinger, K. R. (2016). When to block
versus interleave practice? evidence against teaching frac-
tion addition before fraction multiplication. In Cogsci.

Poesia, G., Dong, W., & Goodman, N. (2021). Con-
trastive reinforcement learning of symbolic reasoning do-
mains. Advances in neural information processing systems,
34, 15946–15956.

Quinlan, J. R., & Cameron-Jones, R. M. (1995). Induction of
logic programs: Foil and related systems. New Generation
Computing, 13, 287–312.

Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). Act-r: A
cognitive architecture for modeling cognition. Wiley Inter-
disciplinary Reviews: Cognitive Science, 10(3), e1488.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L., Gulati,



A., . . . others (2024). Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

VanLehn, K. (1990). Mind bugs: The origins of procedural
misconceptions. MIT press.

VanLehn, K., Ohlsson, S., & Nason, R. (1994). Applications
of simulated students: An exploration. Journal of artificial
intelligence in education, 5, 135–135.

Weitekamp, D., Harpstead, E., & Koedinger, K. (2024). Ai2t:
Building trustable ai tutors by interactively teaching a self-
aware learning agent. arXiv preprint arXiv:2411.17924.

Weitekamp, D., Harpstead, E., MacLellan, C. J., Rachata-
sumrit, N., & Koedinger, K. R. (2019). Toward near zero-
parameter prediction using a computational model of stu-
dent learning. International Educational Data Mining So-
ciety.

Weitekamp, D., Rachatasumrit, N., Wei, R., Harpstead, E., &
Koedinger, K. (2023). Simulating learning from language
and examples. In International conference on artificial in-
telligence in education (pp. 580–586).

Weitekamp, D., Ye, Z., Rachatasumrit, N., Harpstead, E., &
Koedinger, K. (2020). Investigating differential error types
between human and simulated learners. In International
conference on artificial intelligence in education (pp. 586–
597).

Xiao, Z., & Zhang, D. (2023). A deep reinforcement learning
agent for geometry online tutoring. Knowledge and Infor-
mation Systems, 65(4), 1611–1625.


