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Abstract. Knowledge tracers are typically evaluated on the basis of the
goodness-of-fit of their underlying student performance models. However,
for the purposes of supporting mastery learning the true measure of a
good knowledge tracer is not its goodness-of-fit, but the degree to which it
optimally selects next problem items. In this context, a knowledge tracer
should minimize under-practice to ensure students master learning ma-
terials and minimize over-practice to reduce wasted time. Prior work has
suggested that fit-statistic-based measures of knowledge tracer quality
may misrank the relative quality of knowledge tracers’ item selection. In
this work, we evaluate this claim by measuring over- and under-practice
directly in synthetic data drawn from ground-truth learning curves. We
conduct an experiment with 3 well-known student performance models:
Performance Factor Analysis (PFA), BestLR, and Deep Knowledge Trac-
ing (DKT), and find that in 43% of the synthetic datasets, the models
with higher measures of overall predictive performance (e.g. AUC and
MSE) were worse than a comparison model with a lower predictive per-
formance at minimizing over-practice and under-practice. These results
support the hypothesis that overall fit statistics are not a reliable mea-
sure of a knowledge tracer’s ability to optimally select next items for
students, and bring into question the validity of traditional methods of
knowledge tracer comparison.
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1 Introduction

Student performance models estimate the probability that students will correctly
answer the next question items given their prior correct and incorrect responses
and serve both online and offline roles in education. In an online setting student
performance models can be used as knowledge tracers to adaptively select next
problems based on students’ current abilities. In an offline setting, they can be
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used to reveal patterns in student’s learning which can be used to make data-
driven improvements to instructional materials [3].

Knowledge tracing is the online use of a student performance model to ac-
tively estimate students’ mastery of individual knowledge components (KCs)—
the pre-specified facts, skills and principles which students must understand in
order to have mastered a particular domain [6]. Mastery of a KC is typically char-
acterized as the point when a student’s predicted chance of correctly answering
future question items associated with the KC exceed some preset mastery thresh-
old, typically chosen in the range 85-95% [2]. A knowledge tracer leverages its
student performance model to estimate which KCs are mastered and which are
not so that it can select the next practice items for students which correspond to
unmastered KCs. Thus, the challenge of knowledge tracing is to actively adapt
to students as they practice to optimize their use of time—giving them enough
practice problems for each KC to ensure full domain mastery, but not more than
this to avoid wasting time better spent practicing new material. Thus, the ideal
knowledge tracer jointly minimizes over-practice, the number of prescribed prac-
tice problems given after the student has reached mastery, and under-practice,
the number of practice problems which a student would still need to solve in
order to achieve mastery.

Unfortunately, over- and under-practice are not directly measurable quanti-
ties. Instead, the relative quality of knowledge tracers is typically compared on
the basis of the overall fit of their underlying student performance models to
student data. Overall fit statistics take the form π(ŷ, y) and measure the degree
to which the continuous student model predictions ŷ are a good approximation
of the discrete sequence of binary correctness values y = y0, ..., yn (correct=1, in-
correct=0) collected from student transaction logs. Prior work has used a variety
of fit statistics for knowledge tracer comparisons including Mean-Square Error
(MSE), prediction accuracy, log-likelihood, AIC [1], BIC [7], and Area under the
receiver operating characteristic curve (AUC).

In this work, we demonstrate that overall fit statistics can in fact be a biased
basis for knowledge tracer comparison since there are circumstances where a
model’s total predictive performance can be improved without any corresponding
change in the behavior of a knowledge tracer utilizing that model. A model can
fit better without producing any corresponding reduction in the number of over-
and under-practice problems experienced by students.

A similar concern, yet one unrelated to the claims of this work, is the de-
bate over interpretable versus non-interpretable student performance models.
The last decade of knowledge tracing research has been inclusive of a broader
machine learning community which have eschewed traditional models based on
Item-Response Theory (IRT) [5], hidden markov models, and logistic regression
for uninterpretable yet often performant, deep-learning models. Since black-box
models possess more parameters than can be practically interpreted, they are
less amenable to generating defensible and actionable insights about student
data. Thus proponents of deep-knowledge tracers have typically placed a greater
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emphasis on the practical use of their models for online knowledge tracing over
their use as tools of offline analysis.

In this work, our main objective is not to make an argument for interpretable
or uninterpretable blackbox student models, but to bring into question an as-
sumption held in common by both sides of that debate. We show through sim-
ulation that it is possible for a student performance model to fit better than a
baseline model but be worse at knowledge tracing. And we contend that this
raises serious doubts about whether the collective research project of trying to
produce better-fitting student models is necessarily leading to knowledge tracers
which are better at mastery-based item selection.

2 Over-Practice and Under-Practice

Fig. 1. Illustration of over-practice and under-practice attempts

Although counts of over- and under-practice are not directly measurable from
student data, they can be defined relative to a notion of a student’s ground-truth
learning curve—their true probability of answering next question items correctly
at each practice opportunity. Framed in non-stochastic terms, a student’s ground
truth curve for a given KC represents the degree to which that KC has been
mastered at each learning opportunity. It captures the progression of complex
cognitive factors beyond the scope of what statistical performance models typ-
ically capture. A point along the curve captures the degree to which a student
has partially constructed knowledge—a notion that statistical models typically
estimated solely from binary observations of correct and incorrect performance.

By reference to a ground-truth learning curve and a choice of mastery thresh-
old, a model’s instances of under-practice are those where the performance model
predicts performance to be above the mastery threshold when the ground truth
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is below it, and the model’s instances of over practice are those where it predicts
performance to be below mastery when the ground-truth is above the mastery
threshold (Figure 1).

Student performance modeling can be framed as estimating students’ ground-
truth learning curves from the noisy sampling of performance data collected from
tutoring system transactions. The logic of comparing knowledge tracers by their
overall goodness-of-fit to data is motivated by the idea that an optimal recre-
ation of the ground-truth learning curve should produce an optimal prediction
of student mastery. However, this perspective conflates the logic of offline statis-
tical modeling, in which goodness-of-fit can be used to justify hypotheses about
students’ learning trajectories and their relationship to learning materials, with
the narrower aims of online item selection. In this context, a knowledge tracer’s
purpose is simply to make one critical decision: after a student completes each
problem it decides whether to continue prescribing new practice problems with
particular KC requirements or not. Thus, certain variations in the predictions of
a student performance model simply have no bearing on the real-world quality
of their knowledge tracer.

Figure 1 demonstrates how this can be the case by offering an illustration of
a hypothetical set of performance model predictions relative to a ground-truth
learning curve. The intersection of the ground-truth curve with the mastery
threshold divides the figure into 4 quadrants. Predictions in the top-left and
bottom-right quadrants are instances where the model would cause under- or
over-practice. The dots and x’s in Figure 1 represent the predictions ŷA of a
baseline model A. Consider that there is also a comparison model B with pre-
dictions ŷB = ŷA + δ perturbed by some δ which brings B closer to the ground
truth than A. With these perturbations B’s expected overall fit to a sample
of the ground-truth curve should be better than model A’s. However, only a
subset of the shown perturbations would produce improvements in mastery pre-
diction, only those perturbations which move predictions out of the over- and
under-practice quadrants (e.g. like δ4 and δ5).

A core hypothesis of this work is that the prediction differences between dif-
ferent types of student performance models mostly do not correspond to differ-
ences in expected over- and under-practice like perturbations δ4 and δ5. Instead,
we hypothesize that the majority of model improvements are like δ1, δ2, δ3, and
δ6: inconsequential to levels of over- and under-practice, and generally outside
the neighborhood of the ground-truth mastery threshold. One reason to expect
this result is that the more data that models have about students the more
similar their predictions are likely to be. We expect models to have the great-
est difference in their predictions under uncertain circumstances, particularly in
early practice attempts when evidence about the student’s knowledge is sparse.

To test this hypothesis we utilize synthetic student data to establish ground-
truth learning curves. Then we fit various student performance models on the
synthetic data and utilize the ground-truth curves to measure over- and under-
practice. We evaluate whether the student performance models which produce
the least over- and under-practice are also the best fitting models with respect
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to overall performance statistics like AUC and MSE. Finally, we graph MSE as a
function of ground-truth probability to evaluate whether differences in model fit
tend to be greatest within or outside the neighborhood of the mastery threshold.

3 Related Works

Prior work has argued that comparing knowledge tracers on fit statistics alone
fails to estimate their relative efficacy on a substantive scale [14]. For instance,
to claim that model A achieves a 5% improvement in MSE over model B fails to
capture the time savings or post-test performance improvements that would be
achieved by utilizing that model for adaptive item selection. Prior attempts to
estimate this relationship by simulation [14] and analytically [12], have supported
the conclusion that relatively small overall model improvements can yield large
reductions in over- and under-practice. However, Weitekamp et al. [12] point out
that in theory, it is indeed possible for a better-fitting student performance model
to actually perform worse at item selection than a baseline model. The key idea is
that the only predictions which matter for item selection are those in the ground-
truth neighborhood of the mastery threshold—the region where a knowledge
tracer makes its critical decision: to stop prescribing problems for a particular
KC or not. Overall fit statistics may produce a biased sense of knowledge tracer
quality because they capture the goodness of fit of a performance model on early
student transactions which are unambiguously part of the unmastered region.
By contrast prediction differences between models in the neighborhood of the
mastery threshold are likely to be small since there is typically more supporting
evidence from the student transactions preceding it.

4 Methods

We utilize 3 models for synthetic data generation and evaluation: BestLR [4],
DKT [9], and PFA [8]. For each dataset, we use each model to create a simulated
dataset and evaluate each generated dataset with all 3 models to create a 3x3
experiment. In all cases, we use implementations from Gervet et. al. [4].

Our synthetic data generation works by (1) fitting a generation model to the
real data, (2) predicting an error rate for each transaction with a fitted model,
and using the predicted value as a ground truth for an error rate in synthetic
data, (3) sampling a synthetic outcome for each transaction in the synthetic
data based on the corresponding error rate. In this work, we use the same 7
real-world datasets from Gervet et. al. [4], so we generated 21 synthetic datasets
for our experiment using 3 generation models For each synthetic dataset, we use
random cross-validation splitting by students. The data of 90% of the students
are used for training and the data of the other 10% are reserved for the test
set. We resample and retrain 5 times for each condition, examining the relative
counts of over- and under-practice on the test set between models, and compare
this to their relative AUC scores on the test set. We report the average and
standard deviation for each metric across replicates.
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5 Results and Discussion

Table 1 shows the average instances of over- and under-practice and Table 2
shows the average AUC for each dataset and evaluation model pair. Conventional
evaluations assume that between two models the one with the higher predictive
performance (e.g. higher AUC) will be the better model—the one expected to
make fewer over- and under-practice errors. However, our results demonstrate
that this assumption is not always true. We find that in 43% of the synthetic
datasets, there are pairs of models where the higher AUC model commits more
over- and under-practice errors than the lower AUC model. These results support
the hypothesis that overall fit statistics are not a reliable measure of a knowledge
tracer’s ability to optimally select next items for students, and challenge the
credibility of conventional approaches to comparing knowledge tracers.

Table 1. Average numbers of over- and under-practice for each dataset and model

Dataset Generate BestLR DKT PFA

algebra05
BestLR 4.577 ± 0.235 7.261 ± 0.199 10.843 ± 0.433
DKT 13.164 ± 5.184 8.300 ± 0.327 32.522 ± 1.957
PFA 9.067 ± 0.672 13.116 ± 0.835 5.028 ± 0.563

assistments09
BestLR 3.355 ± 0.078 4.488 ± 0.181 5.393 ± 0.151
DKT 7.280 ± 0.151 4.000 ± 0.107 9.597 ± 0.265
PFA 4.258 ± 0.136 5.706 ± 0.246 3.309 ± 0.184

assistments15
BestLR 2.398 ± 0.045 4.388 ± 0.323 2.961 ± 0.056
DKT 8.096 ± 0.107 3.963 ± 0.063 8.233 ± 0.167
PFA 2.377 ± 0.118 4.997 ± 0.186 2.425 ± 0.043

assistments17
BestLR 2.638 ± 0.045 3.567 ± 0.060 5.297 ± 0.085
DKT 6.334 ± 0.226 2.808 ± 0.027 3.614 ± 0.098
PFA 4.663 ± 0.280 4.738 ± 0.395 3.495 ± 0.581

bridge_algebra
BestLR 3.936 ± 0.094 5.494 ± 0.217 6.405 ± 0.132
DKT 14.033 ± 0.368 6.751 ± 0.165 22.319 ± 0.712
PFA 4.762 ± 0.300 6.539 ± 0.200 3.759 ± 0.218

spanish
BestLR 2.447 ± 0.022 4.213 ± 0.160 3.173 ± 0.083
DKT 10.798 ± 0.222 4.600 ± 0.194 12.701 ± 0.345
PFA 2.397 ± 0.041 4.324 ± 0.145 2.109 ± 0.036

statics
BestLR 3.962 ± 0.205 4.263 ± 0.185 10.559 ± 0.442
DKT 10.379 ± 0.415 5.095 ± 0.235 19.067 ± 0.843
PFA 8.333 ± 0.687 7.565 ± 0.589 3.743 ± 0.457

6 Conclusion and Future Works

In this work, we have utilized synthetic data generated by popular knowledge
tracers to test whether models with the highest overall fit statistics necessarily
produce the best predictions of student mastery. Our method allows us to an-
swer questions of the nature: what is the quality of knowledge tracer X’s item
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Table 2. Average and SD of AUC for each dataset and evaluation model

Dataset Generate BestLR DKT PFA

algebra05
BestLR 0.794 ± 0.002 0.728 ± 0.004 0.716 ± 0.004
DKT 0.808 ± 0.003 0.764 ± 0.007 0.737 ± 0.002
PFA 0.689 ± 0.004 0.645 ± 0.004 0.705 ± 0.002

assistments09
BestLR 0.712 ± 0.003 0.636 ± 0.006 0.653 ± 0.003
DKT 0.736 ± 0.005 0.696 ± 0.004 0.670 ± 0.004
PFA 0.629 ± 0.003 0.565 ± 0.007 0.653 ± 0.003

assistments15
BestLR 0.721 ±0.005 0.702 ± 0.006 0.713 ± 0.005
DKT 0.658 ± 0.001 0.674 ± 0.002 0.656 ± 0.001
PFA 0.659 ± 0.002 0.630 ± 0.001 0.659 ± 0.003

assistments17
BestLR 0.734 ± 0.004 0.717 ± 0.005 0.654 ± 0.004
DKT 0.702 ± 0.002 0.728 ± 0.001 0.617 ± 0.001
PFA 0.636 ± 0.002 0.619 ± 0.002 0.639 ± 0.002

bridge_algebra
BestLR 0.834 ± 0.031 0.780 ± 0.033 0.780 ± 0.034
DKT 0.774 ± 0.003 0.747 ± 0.008 0.705 ± 0.004
PFA 0.699 ± 0.005 0.645 ± 0.002 0.715 ± 0.003

spanish
BestLR 0.820 ± 0.003 0.764 ± 0.001 0.811 ± 0.004
DKT 0.808 ± 0.006 0.813 ± 0.006 0.788 ± 0.003
PFA 0.813 ± 0.006 0.763 ± 0.006 0.814 ± 0.006

statics
BestLR 0.799 ± 0.007 0.785 ± 0.010 0.661 ± 0.010
DKT 0.804 ± 0.005 0.801 ± 0.004 0.665 ± 0.005
PFA 0.661 ± 0.005 0.647 ± 0.004 0.670 ± 0.004

selection assuming student learning behaves like model Y? Varying models X, Y,
and datasets we find that in 43% of the synthetic datasets, models with higher
measures of overall predictive performance (i.e. AUC) were worse than a compar-
ison model with a lower predictive performance at minimizing over-practice and
under-practice. We conclude that traditional measures of overall performance
(e.g. AUC) are in fact not reliable proxies for rates of over- and under-practice.
These results raise serious doubts about whether the field of knowledge tracing
follows a sound logic of justification when it comes to model comparison.

As in prior works that have utilized synthetic data for analyses of student
performance models [11], our method relies upon a theoretical commitment to
an underlying model for generating ground-truth curves. Thus our method is
not a stand-in replacement for traditional metrics of model fit which evaluate
models directly on datasets. Yet, methods which draw comparisons between sta-
tistical models and synthetic ground truths have the potential to enable deeper
evaluations than the simple notion of that which fits best is best. In this work,
we have used statistical performance models as ground-truth generators, but
more theory-driven generators such as computational models of learning [13,
10, 12] could be used in their place, to serve as more precise, predictable, and
explainable generators of ground-truth learning curves and synthetic data.

Utilizing more controlled theory driven models for data generation could en-
able more concrete analyses of the sensitivities of different student performance
models to individual student differences and domain types, and models’ behav-
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ior under uncertainty. For instance, while no model in our analyses stood out as
decidedly better than the others, in some cases certain models performed bet-
ter in terms of over- and under-practice on certain datasets. Future work may
also include further analysis of the nature of the unproductive predictions that
each model commits. For example, investigating the conditions when the models
commit those errors and how extreme those errors are could show interesting
insights that lead to a better evaluation metric for knowledge tracers.

References

1. H. Akaike. Akaike’s information criterion. International encyclopedia of statistical
science, pages 25–25, 2011.

2. M. Arlin. Time, equality, and mastery learning. Review of Educational Research,
54(1):65–86, 1984.

3. H. Cen, K. Koedinger, and B. Junker. Learning factors analysis–a general method
for cognitive model evaluation and improvement. In International conference on
intelligent tutoring systems, pages 164–175. Springer, 2006.

4. T. Gervet, K. Koedinger, J. Schneider, T. Mitchell, et al. When is deep learning
the best approach to knowledge tracing? Journal of Educational Data Mining,
12(3):31–54, 2020.

5. R. J. Harvey and A. L. Hammer. Item response theory. The Counseling Psychol-
ogist, 27(3):353–383, 1999.

6. K. R. Koedinger, A. T. Corbett, and C. Perfetti. The knowledge-learning-
instruction framework: Bridging the science-practice chasm to enhance robust stu-
dent learning. Cognitive science, 36(5):757–798, 2012.

7. A. A. Neath and J. E. Cavanaugh. The bayesian information criterion: back-
ground, derivation, and applications. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 4(2):199–203, 2012.

8. P. I. Pavlik Jr, H. Cen, and K. R. Koedinger. Performance factors analysis–a new
alternative to knowledge tracing. Online Submission, 2009.

9. C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-
Dickstein. Deep knowledge tracing. Advances in neural information processing
systems, 28, 2015.

10. N. Rachatasumrit, P. F. Carvalho, S. Li, and K. R. Koedinger. Content mat-
ters: A computational investigation into the effectiveness of retrieval practice and
worked examples. In International Conference on Artificial Intelligence in Educa-
tion, pages 54–65. Springer, 2023.

11. N. Rachatasumrit and K. R. Koedinger. Toward improving student model esti-
mates through assistance scores in principle and in practice. International Educa-
tional Data Mining Society, 2021.

12. D. Weitekamp and K. Koedinger. Computational models of learning: Deepening
care and carefulness in ai in education. In International Conference on Artificial
Intelligence in Education, pages 13–25. Springer, 2023.

13. D. Weitekamp III, E. Harpstead, C. J. MacLellan, N. Rachatasumrit, and K. R.
Koedinger. Toward near zero-parameter prediction using a computational model
of student learning. Ann Arbor, 1001:48105.

14. M. Yudelson and K. Koedinger. Estimating the benefits of student model improve-
ments on a substantive scale. In Educational Data Mining 2013, 2013.


