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Abstract. Simulations of human learning have the potential to revolutionize sev-
eral active areas of educational technology research including student modeling
and the authoring of intelligent tutoring systems. Current simulated students learn
predominantly from worked examples and correctness feedback, but not natural
language instruction. We present a method for simulating how students learn in-
dividual mathematical skills from narrated tutorial instruction—a multi-modal
combination of natural language and worked examples. We simulate the process
of a student imprecisely interpreting an instructor’s verbal instructions, and then
using an accompanying worked example to resolve ambiguities in the instructor’s
language. We find that our system and an alternative approach using Github Copi-
lot are more accurate at synthesizing mathematical formulae from from crowd-
worker generated instructional utterances using a combination of both hints and
examples, than from either form of instruction taken alone. For the purposes of
authoring and student modeling our system has practical benefits over Copilot
and slightly better accuracy.

Keywords: Learning Simulations · Computational Models of Learning · Natural
Language Processing · Code Synthesis · Authoring Tools

1 Introduction
This work details a method for simulating learning from narrated tutorial instruc-

tion and has applications for adding natural language understanding to computational
models of learning and for building non-programmer friendly Intelligent Tutoring Sys-
tem (ITS) authoring tools. The presented system utilizes a multi-modal combination of
natural language instruction and worked examples to synthesize formulae for mathe-
matical concepts. For applications of modeling student learning this capability extends
the scope of instructional interactions from which simulated students can learn [7]. For
the sake of aiding ITS authoring, this capability enables an input modality whereby
non-programmers can verbally instruct a simulated learner to automatically synthesize
functions that produce next-step hints and grading behavior in an ITS.

1.1 Student Modeling

Modeling student learning is an important subject in the learning sciences. The vast
majority of student models are built by fitting to student data, modeling learning as a
change in student performance as a function of time, practice opportunities, or other
features [12]. These statistical modeling approaches can be useful for choosing ideal
next problems for student practice [12], and for indicating places for improvement in
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instructional technologies [2]. They however, cannot directly reveal precise informa-
tion about what instructional changes may improve learning materials and, moreover,
describe very little on their own about the nuances of student cognition.

Computational models of learning are an avenue of research with a great deal of
potential for pursuing a much deeper understanding of human learning. These methods
use simulated students that directly experience the same instructional opportunities as
human students, and induce executable skills from the available hints and correctness
feedback. Instead of modeling performance as a change in scalar probability, simulated
learners have underlying reasons for the actions they take. At any point in learning their
knowledge has a precise representation that can produce both correct next actions and
errors. Prior work has suggested that computational models of learning can be used to
test the efficacy of instructional technology a priori, and to test competing cognitive
theories of learning against human data [19], in addition to many other use cases [17].

Many simulated students implement rather complex bottom-up AI [8][9][15], yet
have been limited in the forms of instruction they can utilize [7]. Current systems learn
predominantly from worked examples and correctness feedback. This work expands the
set of instructional modalities that simulated students can learn from to include natural
language explanations that accompany worked examples.

1.2 ITS Authoring with Simulated Learners
Prior work has also demonstrated that simulated learners hold the potential to dra-

matically speed up the process of building Intelligent Tutoring Systems (ITSs). ITSs are
characterized by fine-grained step-by-step feedback, next-step hints, and adaptive prob-
lem selection [16], and have in some cases shown greater learning gains than human-to-
human tutoring [5]. The power of ITSs lies in the comprehensiveness of their adaptivity,
making for costly development times—about 200-300 hours of development time per
hour of instruction. While non-programmer friendly tools like example-tracing cut this
ratio down to 100:1 or less [1], preliminary studies of simulated learner based tools
have been shown to be 7x faster than example-tracing for authoring of at least one do-
main [18]. Even popular GUI-based tools like example-tracing require programming
based interactions to utilize some features. By contrast, simulated student based au-
thoring tools strive to operate purely by natural tutoring interactions [7], which may
allow authors to build more elaborate and adaptive tutoring systems efficiently without
programming, opening up ITS authoring to a wider set of users.

A major barrier toward building a general purpose ITS authoring tool with simu-
lated learners is the use of an often intractable form of brute-force search used to drive
a learning mechanism called how-learning. In the context of using simulated students as
ITS authoring tools, how-learning essentially automates the process of writing formulae
that specify how next-step values are computed at each step. How-learning composes
domain general functions to explain an author’s demonstrated actions from values vis-
ible in a tutoring interface. The trouble is that the set of functions made available to
how-learning must be made very large for a general purpose authoring tool. And with
this large corpus of functions—which might include many kinds of functions beyond
just arithmetic operations—how-learning may search through an intractably large space
of function compositions and can be prone to stopping short on incorrect formulae that
reproduce the demonstrated action but are incorrect in general.
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In this work we offer a method for processing authors’ verbal instructions along with
demonstrated worked examples. These verbal instructions clarify the particular compo-
sition of functions used to produce their worked example. By interpreting the natural
language and example together, our system overcomes the intractability of performing
how-learning on demonstrated examples alone. Beyond the scope of this work, other
challenges within the simulated learner authoring tool space include inducing complex
decision making processes from examples to program the kinds of dynamic control
structures for ITSs, typically only implementable by programming production rules.
In this work we are concerned only with generating next step formulae for problem
individual steps—just the “then” part in the “if-then” structure of production rules.

1.3 Prior How-learning Mechanisms in Simulated Learners
In many ITSs, such as cognitive tutors [13], human students experience worked

examples as bottom-out-hints, the final hints in a sequence of available hints. Hint se-
quences often begin with high-level conceptual suggestions (e.g. “Convert the fractions
so they have the same denominator”), then progressively become more specific and
operation-oriented (e.g. “You can use the butterfly method, multiply the denominators
to find a common denominator.”). ITS hints are an on-demand source of the sorts of
verbal instruction that would typically be provided by a human tutor. While human stu-
dents make use of all sorts of hints, current simulated students are generally only able
to utilize the final worked-example bottom-out hints. For instance, a bottom-out hint for
the following problem step

might be “put ‘12’ in the denominator”. For lack of natural language processing
capabilities simulated learners typically experience the worked-examples from bottom-
out hints as Selection-ActionType-Value triples: e.g. (“left converted denominator”,
“UpdateTextField”, “12”), that specify the interface element acted upon, the kind of
action taken, and the value inserted.

Typically a simulated learner’s how-learning mechanism tries to explain the “value”
field of these triples using the functions available to it and the values visible in the
interface. In the process of searching for an explanation it might use the visible ‘4’ and
‘3’ plus a prior knowledge function ‘multiply’ to find that “4*3 = 12”, which yields the
correct formula “f(A,B) = A*B”. How-learning via this guess-and-check search process
to reproduce worked examples typically only succeeds in producing correct formulae
in simple cases. Consider a problem with a slightly more complex formulae:

"Find the slope of the line that passes through (5, 4) and (7, 8)"

The worked example solution is “2”, and the correct composition for this case is “(8-
4)/(7-5) = 2”, however a how-learning mechanism would almost certainly first consider
more parsimonious explanations like “8/4 = 2” or “7-5 = 2” in their search process.
Additionally if the target formula is sufficiently complex, having a form consisting of
many compositions of compositions of functions and so on, then the space of possible
compositions that must be checked to arrive at the target formulae can be intractably
large—exceeding available time and/or memory limitations.
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2 Verbal Instruction and Examples Together Reduce Ambiguity
Prior how-learning approaches that exclusively induce explanations (i.e., function

compositions) from worked example steps can often be cognitively infeasible. In the
worst cases, the explanation search may consider tens of thousands of function com-
positions. Additionally, within the set of compositions considered, a large subset may
reproduce the worked example. In other words, traditional how-learning approaches
have issues of intractability and ambiguity. There is a glaring missing piece to this
purely example-based approach to learning—that a great deal of human learning relies
on written or verbal instruction articulated in natural language.

Natural language instruction on its own can often be quite clear and direct, though
it too can produce sources of ambiguity. For instance, the sentence “Add 3 and 4 times
5” can be reasonably interpreted in multiple ways: as (3+4)*5 or 3+(4*5). Together,
worked examples and narrated tutorial instruction can resolve each other’s ambigui-
ties. For instance, accompanying the previous utterance with a demonstration of “23”,
verifies that the latter formula, “3+(4*5)”, was the intended one.

The power of narrated tutorial instruction is that it grounds verbal descriptions of
concepts within an example. Teaching a human is not like programming a computer.
Learning is an imprecise constructive process that involves interpreting information ob-
served from various forms of instruction, then applying and refining the knowledge in-
duced from those instructional experiences. Multimedia learning principles dictate that
a combination of language-based and visual instruction is often a boon to learning [10].
This work models this multi-model interpretive process computationally as a process of
using two sources of instructional information that each disambiguate the other.

3 Grounded Operational Hints
The system we present in this work utilizes a particular kind of instructional utter-

ance, which we refer to as grounded operational hints. A grounded operational hint is,
1) Grounded: It specifies all values utilized in the execution of a demonstrated worked
example. 2 ) Operational: It explicitly specifies every operation utilized in the execu-
tion of the demonstration.

Fig. 2: (P10) Finding the area of the arc.

An appropriate grounded operational hint for the above problem might be: “Divide
135 degrees by 360 degrees to get the proportion of area in the arc and multiply this by
the square of the radius 6.” In this example “135”, “360”, and “6” are the values neces-
sary to compute the solution, while “divide”, “multiple”, and “square” are the explicit
operations. Grounded operational hints might include additional conceptual details, like
“to get the proportion of area in the arc” or extra descriptive words like “degrees” or
“radius”. Extra non-operational information is admissible so long as every value and
operation is present. In this work, we also assume that grounded operational hints are
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articulated as if they were spoken, and thus shouldn’t include mathematical notation.
For instance, “divide 135 by 360” as opposed to “135 / 360”.

A limitation of this work is that our systems learns only from the grounded oper-
ational portions of hints. There are perhaps many ways of characterizing, and simu-
lating learning from instructional utterances beyond this. Other considerations include
utterances pertaining to named objects, or to preconditions (i.e. “if” parts) of skills,
as opposed to only the action parts (i.e. “then” parts) of skills. Li et. al. [6] offer one
compelling approach in these directions.

4 Guiding Formula Search with Grounded Operational Hints
Our system utilizes both grounded operational hints and worked examples together,

by operating in two stages. In stage 1 the grounded operational hint is parsed into a
search policy. In stage 2 a modified version of one of the Apprentice Learner frame-
work’s [18] how-learning planners uses this policy to search for an explanation for the
worked example value. This two phase approach simulates a processes of mutual dis-
ambiguation [11], where a student interprets an instructor’s natural language to get a
rough idea, and clarify its meaning with a worked example. For instance, for the fol-
lowing problem:

Fig. 3: (P8) Find the area of the shaded region.

A user could provide the demonstration “90” accompanied by the hint “Subtract
half of 20 times 12 from half of 10 times 6”. The parser outputs a policy that suggests
an interpretation for this sentence:

1: [(multiply, [’20’,’12’]), (multiply [’10’,’6’])]

2: [(half, [])]

3: [(subtract, [])]

Each of the lines of this policy specify precisely the operations to attempt at succes-
sive recursion depths of how-search. At depth 1), 20 and 12, and 10 and 6 are multiplied,
and the results added to the total set of available intermediate values. At depth 2) the
halves of the available values are introduced to the set of available values as well. At
depth 3) every pair of values is subtracted from one another.

The empty brackets “[]” at depths 2 and 3 indicate an operation in the policy for
which the operands are not specified, meaning every combination of available values
are tried as arguments. A current limitation of our parser is that it cannot produce poli-
cies that specify operands for operations in stages beyond the first. If all of the operands
at each depth of search could be uniquely specified then the policy would be isomor-
phic with a single formula, otherwise the policies are loose interpretations of hints that
circumfscribe a space of possible formulae.

The policy in the above example encloses a search space of many possible function
compositions—albeit far fewer than a search space unguided by a policy. Within this
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space of formulae, only the target composition (20*12)/2 - (10*6)/2, yields the worked
example value “90”. And so the target formula f(a,b,c,d)=(a*b)/2 - (c*d)/2 is the only
formula recovered by searching with this policy.

Our program which translates grounded operational hints into policies utilizes a
neural network-based grammar parser [4] and coreference resolver1. As with all neural
network systems, these components of our parser do not produce the correct output
100% of the time. Nonetheless, by loosening and re-executing policies in phases, bad
policies can be generalized, and often still recover correct formulae. This functionality
reduces the sensitivity of our system to the unpredictable errors of neural components.

5 Translating Natural Language to Policies
Our system utilizes only a combination of pretrained neural components from the

Spacy NLP toolset [4] and our own hard-coded rules. We do not fit our system to any
domain-specific data. Our system operates in five processing steps. Steps 1 and 2 pre-
pare the hint text for grammatical parsing, and steps 3-5 produce the resulting policy.

Step 1 Apply Special Rules: First a small set of regular expressions are matched
against the text string to handle special cases. Each match is replaced with a placeholder
word “xcat”. These special regular expressions are needed for capturing patterns com-
mon in mathematical language like “7 times 8” and “9 divided by 12”, which mimic
the grammar of mathematical notation (e.g. “7*8” and “9/12”), but are otherwise gram-
matical anomalies compared to most English utterances. For instance, someone might
instruct someone to “mix red paint and blue paint”, but they wouldn’t tell them to “red
paint mix blue paint”. We only use these special rules in cases where mathematical lan-
guage diverges from normal English grammar conventions, and to match multi-word
operations like “one’s digit”. Cases with typical grammatical structures, like “subtract
2 from 3”, are processed by the grammar parser as normal.

Step 2 Replace Numbers and Operations: Mathematical language lends itself to
a few additional quirks that can confuse a grammar parser trained primarily for parsing
non-mathematical English text. For instance in the parse of the sentence below on the
left, the operation “divide” is interpreted incorrectly as a noun, and the number “8” is
parsed as a numerical modifier of it—grammatically more similar to a sentence like
“we witches three” than the intended interpretation where “divide” is a verb, and “8”
and “4” are its direct objects.

Fig. 4: (left) A hint parsed before steps 1 and 2. (right) A hint after steps 1 and 2 with
operations replaced by “fetch” and operands replaced by “cat”.

To avoid incorrect parses like these we do a preliminary parse and replace opera-
tions not tagged as verbs or as nouns in prepositional phrases with “fetch”, and every

1 https://spacy.io/universe/project/coreferee
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number is replaced with “cat”. During development we found that these placeholder
words were the most likely to produce the correct parts-of-speech among several that
we tried. Operations are identified by hard-coded sets of keywords. For instance, di-
vision can be identified by “divide”, “quotient”, “ratio”, or “proportion”, in addition
to morphological variants of these like “division”, or “divided”. Spacy identifies these
morphological variants automatically.

Step 3 Grammatical Parsing & Coreference Resolution: After making any re-
placements a final parse is performed. Figure 4 shows simple examples of how the
Spacy parser adds part-of-speech tags to words and structures them into dependency
trees. This hierarchical structure can be used to determine the operands of an operation,
and the stage of how-search at which it should be applied. In cases where pronouns like
“it” or “them” refer to earlier utterances, a coreference resolver is used to help establish
what part of the sentence the pronoun is referring to. This too helps determine the order
of each operation and their operands.

Fig. 5: Steps 1-4 applied to hint “half the product of 8 times 4 and 3”. The root verb
“half” is replaced by “fetch”. The special pattern “8 times 4” is replaced with “xcat”,
and the value “3” with “cat”. Colored boxes (A), (B), and (Final) demonstrate the pro-
cess of a policy being constructed by extending the policies of downstream operations.

Step 4 Building Policies by Recursion: Grammatical parse trees are typically
rooted in the main verb of each sentence. To build a policy from this tree the depen-
dency links are traversed recursively, and each recursion returns the working policy of
its downstream dependencies. If an operation is identified at any step, it is added to
the working policy produced from downstream. If the operation token has any of sev-
eral direct object-like dependencies with these downstream tokens, then the operation is
added to a new depth-level in the policy—indicating that it should be applied after the
dependent operations—instead of at the current deepest depth of the working policy.
When operands are encountered they are added to a working list of operands and are
associated with the first upstream operation. If any of the dependencies of an operation
have a coreference link then the operation is added to the working policy at one depth
deeper than the longest working policy of the dependencies. Future implementations
may use these links from coreferences and downstream operations to specify operands
of operations that are calculated from evaluating other operations.

Step 5 Post-Processing: Finally the resulting policy is cleaned of logical incon-
sistencies. A policy’s first depth should contain only operations applied on operands
explicitly stated in the grounded operational hint. Thus, any operation-argument pair
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like this found in a later depth is moved to the first depth. Any pair of operations and
arguments at the first depth with too few arguments is copied into depth two with its
arguments removed. Finally any redundant pairs in each depth are removed.

6 Applying Policies in Stages
Because the grammar parser and coreference resolver can produce errors, the hint-

to-policy translation process doesn’t always produce perfect policies. Our system will
nonetheless often produce correct formulae by incrementally generalizing the found
policy in phases. If any phase produces no formulae that explain the worked example
or produce more than 100 candidate formulae, then the next phase is engaged.

In phase 1 the policy is executed as normal. If multiple formulae are returned then
they are scored and sorted to favor solutions that use the pairs of operations and argu-
ments stated in the policy. In phase 2 the policy is generalized by removing any specified
operands, forcing the search process to try all permutations of visible or stated values
with each operation. In phase 3 the operands are kept but the policy is spread out so that
each operation at each depth is also tried at the next depth. This makes the policy tried
at phase 3 one depth deeper than the original policy. In phase 4 all operations mentioned
in the hint are tried at all depths out to a fixed depth of 3. In phase 5 all operations in the
available function set are tried out to a fixed depth of 3. Phase 5 is the same as applying
how-learning search with only the worked example and no hint.

7 Related Work
Much prior work on natural language processing of mathematical language pertains

to the translation of word problems, or other text describing mathematical relationships,
directly into equations [20] [14]—essentially the skill of translating word-problems to
algebraic equations. By contrast, our system interprets the operational language of natu-
ral language instruction, and outputs executable knowledge structures that can perform
steps in mathematical procedures.

Recently large language models (LLMs) like OpenAI’s Codex [3] have been shown
to be able to translate text descriptions to synthesized code. These recent works are
closer to ours, in the sense that, like our system, they can synthesize executable formu-
lae. We compare our system’s performance with Codex via the Github CoPilot plugin
for Visual Studio.

8 Large Language Models are Poor Models of Novices
When simulating learning it is important to appropriately model the prior knowl-

edge of target learners. Unlike an LLM our simulation only assumes prior knowledge
of basic natural language parsing capabilities (by use of a pre-trained grammar parser
and coreference resolver). LLMS by contrast often have broad generative capabilities
trained from many domain-specific experiences greater in number and diversity than
any human would ever encounter in a lifetime (like tens of millions of github reposito-
ries for Codex).

Toward the goal of building computational models of learning, an LLM’s massive
scale of prior experience completely contravenes the objective of modeling a novices’
learning trajectory from first experiences to mastery. Our system by contrast only uses
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prior training experiences for grammatical parsing, making it a suitable model of a
reasonably articulate but not necessarily mathematically knowledgeable novice.

Toward the goal of using simulated students as authoring tools, however, the cog-
nitive fidelity of various learning mechanisms is not a constraining factor. Thus, if an
LLM like Codex proves better than our approach at producing target formulae—even if
only because somewhere in its vast training set there is an example analogous to the tar-
get task—then it may ultimately be the preferable tool. Yet, if Codex succeeds largely
because it is directly mimicking instances from its training set—not because it is suit-
ably powerful as a general text to code translation tool—then it may fail systematically
when tasked with aiding authors at building tutoring systems for one-of-a-kind materi-
als. We evaluate this possibility by comparing our system with Codex on descriptions
of made-up formulae.

9 Methods
We recruited 10 crowd workers through Prolific to generate grounded operational

hints. Participants solved 14 unique math problem steps, and provided both conceptual
hints (i.e. “describe the concept in broad terms”) and grounded operational hints for
that problem step. We requested conceptual hints simply so participants had an alter-
native place to write any conceptual instructions that came to mind, and to encourage
consideration of the distinction between the two kinds of hints. The conceptual hints
are not used in our evaluations. We additionally asked participants provide grounded
operational hints “as if spoken aloud”. They were asked to not used mathematical nota-
tion such as “+*/-”. Participants were also given a short five question “check your un-
derstanding” survey to ensure they understood the difference between conceptual and
grounded-operational-hints, and each section of the form began with a short reference
sheet.

Two of the authors independently coded each participants’ grounded operational
hints to mark if they were indeed both grounded (i.e. “mentions all required arguments
and constants”), and operational (i.e. “mentions all required operations”). An inter-rater
reliability of 97.2% was achieved, and the discrepancies were resolved through discus-
sion. Hints marked as both grounded and operational, we refer to as “good” hints.

For each response where participants produced the correct step answer, we ran
the accompanying participant-generated grounded operational hints through our system
with and without hints. We did the same with Codex via Github Copilot with and with-
out worked examples, which were used to eliminate functions based on return value.
Our system had the 7 functions “Add, Multiply, Subtract, Divide, Half, OnesDigit, and
Square” available to it, which was sufficient for building function compositions for all
of the target formulae, plus 8 additional functions not needed for any of the target tasks
“TensDigit, Power, Double, Increment, Decrement, Log2, Sin, and Cos”.

Typically Github Copilot takes a function header and doc string and automatically
produces a function implementation. We filled our participants’ grounded operational
hints into Github Copilot as the doc-string of an empty Python function with the header
“foo():”. We recorded the extended set of suggestions Copilot produced, not just the
first suggested implementation. As with our system, this extended set of suggestions
produces a small variable number of candidate solutions. Typically Copilot uses ar-
guments specified in the function header. Since this information is not present in the
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participant’s hints, we omit arguments and just evaluate whether CoPilot suggests func-
tion implementations that are functionally equivalent to the target formulae, expressed
with constants instead of arguments. When examples were included, we also executed
each of these functions to see if they reproduce the worked example.

For both systems we measured whether or not a correct formula was produced for
each grounded operational hint, and counted the number of incorrect formulae pro-
duced. We considered any algebraic rearrangements (e.g. A*B = B*A) of the target
formula to be correct. Thus, we use the average number of incorrect formulae as the
principle measure of error magnitude, instead of proportion correct, which would be
sensitive to returning several isomorphic formulae. The principal measures of the rate
of correctness are 1) the percentage of the participant provided hints where the system
produces at least one correct formula (i.e. “has correct”), and 2) the percentage where
only the correct formula is produced (i.e. “only correct”).

To evaluate Codex’s potential performance on one-of-a-kind formulae unlikely to
be present in its training set, we repeated these evaluations for a set of 10 made-up
formulae with accompanying grounded operational hints that we wrote ourselves.

10 Results
Each of our 10 participants finished 14 problems for a total of 140 responses. We

removed 26 responses where participants produced incorrect answers and used the re-
maining 114 grounded operational hints for evaluation. Our system produced sets of
formulae containing at least one correct formula 82.4% of the time, and 69.2% of the
time only correct formulae were returned. Of the 114 grounded operational hints 87
were coded as “good”. On average our system performed better for the “good” hints,
86.2% had correct formulae and 73.6% had only correct formulae. For the set of all 114
responses our system produced an average of 1.54 unique incorrect formulae, whereas
for the “good” hints it produced an average of 0.54 incorrect formulae.

Fig. 6: Overall performance and performance by problem on “good” hints for our sys-
tem and Github Copilot. Reduction in how-search size from hints is shown.

Overall our system’s performance (Figure 6) was improved considerably by pars-
ing hints in addition to worked examples. When using only worked examples without
hints, as in prior work, our system produced only correct solutions 28.7% of the time.
Succeeding on just 4 of the 14 problems. Hints also reduced the average number of
incorrect formulae from 8.33 to 0.54, and the average search space size from 3952
function compositions to 162.
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Github Copilot achieved the same “has correct” performance as our system on
“good” hints with a slightly worse “only correct” performance of 67.4%. Our system
performed nearly perfectly on problems 1-7 which had shorter formulae and partici-
pant hints—an average of 16 words, versus 24 words in problems 8-14. Most of our
systems’ errors came from difficulties parsing the verbose hints from problems 8-14.
Copilot’s performance was more varied, but was much higher than our system for some
problems (e.g. P8, P11). This is likely partially due to memoization of similar prob-
lems in Codex’s training set, since in some cases it produced code with suspiciously
domain-specific inline comments and variable names. However, Copilot also performed
perfectly on our corpus of 10 made-up hints and worked examples, verifying that it is
indeed strong at novel code generation. By contrast, our system also produced correct
formulae for all 10 made-up hints, and only a few incorrect formulae for 4 of them.

11 Discussion
Both systems showed improvements consistent with the assertion that the combina-

tion of langauage and worked examples benefits instruction comprehension over either
taken alone. Our system generally performed best on more concise hints—a pattern of
performance that bodes well for computational modeling purposes. Humans often learn
better from concise directed learning experiences. Problems like problem P8 (Figure
3), which our system performed poorly on, are often scaffolded into multiple steps in
ITSs. Copilot by contrast had no consistent performance pattern, and showed signs of
leveraging prior domain-specific knowledge.

12 Conclusion
For ITS authoring purposes these systems could be used interactively with speech-

to-text. Authors could build ITSs with these systems through narrated tutorial instruc-
tion, explaining worked examples verbally as they write them. Trial-and-error may re-
fine authors’ verbal instructions and produce a higher rate of success than our crowd-
worker data suggests. In principle, our system could also help authors write their own
formulae, by revealing the syntax and many available functions of an authoring tools’
formula language. Both systems produced a fairly small average number of incorrect
formulae, meaning correct formulae can be easily selected from among a small set of
candidates. Even if no candidate formulae are correct, it may still be easier for authors to
fix incorrect formulae than to write new ones. In this work we’ve only composed math-
ematical functions, but more varied function compositions including string manipula-
tions and other special operations could be used by our system, with little modification.
The same is probably not true for Copilot, but is worth testing.

Future computational modeling work may investigate how these simulated language
comprehension abilities compare to various human learners. In this work we’ve demon-
strated two means of generate knowledge from grounded operational instruction. This
is, however, only a first step. Our system takes a relatively structured approach, com-
pared to the method using Copilot, making it conducive to many future refinements
and investigations. This opens opportunities to investigate questions of how learners
interpret tutorial instruction, and how instruction and ITS hints may be improved as a
result. For now we’ve achieved our main objective, to expand what simulated students
can feasibly learn, and the set of instructional experience they can learn from.
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