Simulating Learning From Language and Examples

Daniel Weitekamp1 , Napol Rachatasumrit!, Rachael Wei?, Erik Harpstead1 ,and
Kenneth Koedinger!

' Carnegie Mellon University, Pittsburgh PA 15289, USA
2 University of Illinois Urbana-Champaign, Champaign IL 61820, USA

Abstract. Simulations of human learning can be used as computational models
for evaluating theories of learning. They can also be taught interactively to author
intelligent tutoring systems. Prior simulated learner systems have learned induc-
tively from worked examples and correctness feedback. This work introduces a
mechanism where simulated learners can also learn from natural language. Using
a neural grammar parser with additional symbolic processing steps, we simulate
the production of loose interpretations of verbal instructions. These interpreta-
tions can be combined with worked examples to resolve the ambiguities of either
form of instruction alone. We find that our system has practical benefits over an
alternative method using github Copilot and slightly better accuracy.

Keywords: Learning Simulations - Computational Models of Learning - Natural
Language Processing - Code Synthesis - Authoring Tools

1 Introduction

A computational model of learning is a student model that learns directly from
instructional material, as humans do, and produces particular incorrect and correct re-
sponses as a result. By contrast statistical models of learning are fit to student data
and typically reduce the cognitive complexities of learning to numerical predictions
of performance [2]. Computational models of learning embody executable theories of
learning that can be applied to learning materials to evaluate instruction a priori with-
out fitting to student data [8]. While a statistical model may characterize learning as a
change in the probability of correct responses, a computational model produces partic-
ular responses to question items and has interpretable underlying reasons for them.

Prior simulated student technologies used as computational models of learning have
predominantly learned from worked examples and correctness feedback [5][6]. This
work expands the set of instructional modalities that simulated students can learn from
to include natural language instruction.

Worked examples alone can be ambiguous. The particular content of a worked ex-
ample often lends itself to many different explanations. For instance for the problem:

Find the slope of the line that passes through (5, 4) and (7, 8)

The worked example solution is 2, and the correct explanation in this case is (8 —
4)/(7—5) = 2. However, there are also several incorrect explanations like 8/4 = 2
or 7—5 = 2. Prior simulated learners have used an error-prone brute-force guess-and-
check style method called how-learning to induce these sets of operations. This work

2 Daniel Weitekamp et al.

aims to allow simulated learners to learn more robustly by interpreting natural language
instruction to disambiguate the operations used to produce worked examples.

Simulated students can also be used to rapidly author intelligent tutoring systems
(ITS). ITS authoring can be a time consuming process. For instance, programming an
hour of cognitive tutor based instruction takes about 200-300 hours of development
time [1]. ITS authoring with simulated learners has been shown to be considerably
faster even than GUI-based authoring methods [7]. Yet prior simulated learner based
authoring systems have suffered from induction errors that put domain-general author-
ing out of reach. Typically simulated-learner’s how-learning mechanisms help authors
to program formulae that grade and producing bottom-out hint answers for problem
steps. Enabling this functionality for domain-general authoring presents a challenge:
when a large set of functions are made available to how-learning—which might in-
clude many kinds of functions beyond just arithmetic operations—how-learning may
search through an intractably large space of function compositions, making it prone
to stopping short on incorrect formulae that reproduce worked examples but that are
incorrect in general (like in the example above). The method we present in this work
allows authors to verbally clarify the composition of operations used in their worked
examples. Our system interprets natural language and examples together to overcome
the intractability of performing how-learning on demonstrated examples alone.

20 L.

Demonstration

10 - Value 920
12} .
(J_V fx) (A*B)12 - (C*D)/2
Args) e

What is the area of the shaded region? f Hint Subtract half of 20
21 times 12 and half of

10 times 6.
90

Fig. 1: (left) A worked example “90” for a triangle area composition problem. (right)
the user’s recorded spoken instruction “f Hint” and the induced formuale “f(x)”.

2 Related Work

The majority of prior work on natural language processing of mathematical lan-
guage pertains to the translation of word problems directly into equations [9]. By con-
trast, our system interprets operational langauge-based instruction, and outputs exe-
cutable knowledge structures that can perform steps in mathematical procedures. Large
language models (LLMs) like OpenATI’s Codex [3] are closer to our method in terms of
functionality, in the sense that, like our system, they can synthesize executable formu-
lae. We compare our system to Codex via the Github CoPilot plugin.

3 Better Models of Novices than LLMs with Neuro-Symbolic Al

Simulations of learning must make theoretical commitments about both learner’s
prior knowledge and about the content of the target knowledge being taught. The goal
of a computational model of learning is to explain how knowledge is constructed and

Simulating Learning From Language and Examples 3

refined through learning. LLMs don’t hold much promise of helping with these sorts
of simulations because insofar as they exhibit mastery of capabilities that students typ-
ically learn, they have acquired those capabilities from many domain-specific expe-
riences greater in number and diversity than any human would ever encounter in a
lifetime (like millions of github repositories for Codex). While LLMs boast impres-
sive generative capabilities, their learning process is considerably less data-efficient
than human learning. Additionally their knowledge is largely encoded in unexplainable
“blackbox” weights, acquired from often proprietary datasets. Most of all, LLMs sim-
ply know too much to be useful for modeling learning. A pre-trained model that already
possess the domain-specific capabilities that one intends to simulate the acquisition of
is useless for modeling a novices’ learning trajectory from first experiences to mastery.

By contrast, our approach restricts itself to only the use of a pre-trained neural gram-
mar parser [4] and coreference resolver>, but uses no text generation models. Our use of
a pre-trained grammer parser assumes that our simulated students can, as prior knowl-
edge, parse the structure of English sentences, but does not assume an ability to translate
mathematical language to executable operations or written equations. Our system trans-
forms grammatically parsed sentences in several hard-coded yet domain-general pro-
cessing steps to produce search policies for guiding a typical simulated learner’s how-
learning mechanism. These policies embody loose interpretations of sentences, which
enclose small spaces of possible function compositions intended by the input sentence.
Combining these policies with the typical search process used in how-learning disam-
biguates the formulae an instructor or ITS author intended to teach with their combined
worked examples and natural language instruction.

dobj conj
det orep m cc
the a

fetch product of xcat nd cat .
half 8 times 4 3
VERB DET NOUN ADP PROPN CCONJ PROPN
Append to policies 1: [(Multiply, ['8, 4] (A)
of downstream T Operation downstream of “product” (B)

opeartions 1: UMuttiply, ['8, ‘41)] Argument downstream of “product”
2: [(Multiply, ['37)]
1: [(Multiply, ['8, ‘41)] (Final)

2: [(Multiply, [3]
3: HH;;’I%}I}' =l Operation downstream of “half”

Fig. 2: Parsing and policy for “half the product of 8 times 4 and 3”. Boxes (A), (B),
and (Final) show the recursive process of a policy being constructed by traversing the
grammatical parse of a sentence.

For authoring purposes, we don’t need to constrain prior knowledge of simulated
learners. Thus, if an LLM like Codex proves better than our approach at producing
target formulae—even if only because somewhere in its vast training set there is an
example analogous to the target task—then it may ultimately be the preferable tool. Yet,
authoring still requires domain-general generative capabilities, so if Codex is relying on
instances from its training set, in lieu of broader generative capabilities, then it may fail
when tasked with aiding authors at building one-of-a-kind materials. We evaluate this
possibility by comparing our system with Codex on descriptions of made-up formulae.

3 https://spacy.iofuniverse/project/coreferee

4 Daniel Weitekamp et al.

4 Methods

We recruited 10 crowd workers through Prolific to generate natural language in-
structions (i.e. hints) for problem steps. Participants solved 14 unique math problem
steps, and provided conceptual hints (i.e. “describe the concept in broad terms”) and
grounded operational hints, which we requested include all operations and values used
to produce the answer, without using mathematical notation—they should be written as
if spoken aloud. Conceptual hints were requested simply to highlight the requirements
of operational hints and are not used in our evaluations. Participants were given a five
question check your understanding survey to ensure they understood these distinctions.

Two of the authors independently coded each participants’ grounded operational
hints to mark if they were indeed both grounded (i.e. “mentions all required arguments
and constants”), and operational (i.e. “mentions all required operations”). An inter-rater
reliability of 97.2% was achieved, and the discrepancies were resolved through discus-
sion. Hints marked as both grounded and operational, we refer to as good hints.

For each response where participants produced the correct answer, we ran the partic-
ipant’s hints and worked examples through our system, and also with worked examples
only. We did the same with Codex via Github Copilot. In this case worked examples,
which were used to eliminate functions based on return value. We also ran Copilot with
hints only. Our system had 7 functions “Add, Multiply, Subtract, Divide, Half, Ones-
Digit, and Square” available to it, which were sufficient for building function composi-
tions for all of the target formulae, plus 8 additional functions not needed for any of the
target tasks “TensDigit, Power, Double, Increment, Decrement, Log2, Sin, and Cos”.

Typically Github Copilot produces a function implementation from a function header
and doc-string. We filled our participants’ grounded operational hints into Github Copi-
lot as the doc-string of an empty Python function with the header foo () :, and recorded
the extended set of suggestions. Similar to our system’s output this constituted a small
variable set of candidate solutions. Typically Copilot uses arguments specified in the
function header. This information is not present in the participant’s hints, so we omit
arguments and just evaluate whether Copilot suggested implementations that were func-
tionally equivalent to the target formulae, expressed with constants instead of argu-
ments. When examples were included, we also executed each of these functions to see
if they reproduced the worked example.

For both systems we measured whether or not a correct formula was produced for
each grounded operational hint, and counted the number of incorrect formulae pro-
duced. We considered any algebraic rearrangements (e.g. A * B = BxA) of the target
formula to be correct. Thus, we use the average number of incorrect formulae as the
principle measure of error magnitude, instead of proportion correct, which would be
sensitive to returning several isomorphic formulae. The principal measures of the rate
of correctness are (1) the percentage of the participant provided hints where the system
produces at least one correct formula (i.e. has correct), and (2) the percentage where
only the correct formula is produced (i.e. only correct).

To evaluate Codex’s potential performance on one-of-a-kind formulae unlikely to
be present in its training set, we repeated these evaluations for a set of 10 made-up
formulae with accompanying grounded operational hints that we wrote ourselves.

Simulating Learning From Language and Examples 5

5 Results

Each of our 10 participants finished 14 problems for a total of 140 responses. We
removed 26 responses where participants produced incorrect answers and used the re-
maining 114 grounded operational hints for evaluation. Our system produced sets of
formulae containing at least one correct formula 82.4% of the time, and 69.2% of the
time only correct formulae were returned. Of the 114 grounded operational hints 87
were coded as good. On average our system performed better for the good hints, 86.2%
had correct formulae and 73.6% had only correct formulae. For the set of all 114 re-
sponses our system produced an average of 1.54 unique incorrect formulae, whereas for
the good hints it produced an average of 0.54 incorrect formulae.

Performance with Good Hints Performance by Problem with Good Hints
Our System Codex(Copilot)

86.2% 86.2% 86.2%

o
73.6% 67.8%

g
2
S
o

ours Only Correct:
o e 31.09~ ,
of |28:7% Has Correct Has Correct |20
mmm Only Correct Only Correct

No Hints Hints & . No Examples Hints &
eizs Examples

R ERE S K SR G RPN R

Fig. 3: Overall performance and performance by problem on good hints for our system
and Github Copilot. Reduction in how-learning search size from hints is shown.

Overall our system’s performance (Figure 3) was improved considerably by pars-
ing hints in addition to worked examples. When using only worked examples without
hints, as in prior work, our system produced only correct solutions 28.7% of the time.
Succeeding on just 4 of the 14 problems. Hints also reduced the average number of in-
correct formulae from 8.33 to 0.54, and the average search space size of how-learning
from 3952 function compositions to 162.

Github Copilot achieved the same has correct performance as our system on good
hints with a slightly worse only correct performance of 67.4%. Our system performed
nearly perfectly on problems 1-7 which had shorter formulae and participant hints—an
average of 16 words, versus 24 words in problems 8-14. Most of our systems’ errors
came from difficulties parsing the verbose hints from problems 8-14. Copilot’s per-
formance was more varied, but was much higher than our system for some problems
(e.g. P8, P11). This is likely partially due to mimicking of similar problems in Codex’s
training set, since in some cases it produced code with suspiciously domain-specific in-
line comments and variable names. However, Copilot also performed perfectly on our
corpus of 10 made-up hints and worked examples, verifying that it is indeed strong at
novel code generation. By contrast, our system also produced correct formulae for all
10 made-up hints, and only a few incorrect formulae for 4 of them.

6 Discussion

Both systems showed improvements consistent with the assertion that the combina-
tion of langauage and worked examples benefits instruction comprehension over either
taken alone. Our system generally performed best on more concise hints—a pattern of

6 Daniel Weitekamp et al.

performance that bodes well for computational modeling purposes. Humans often learn
better from concise directed learning experiences. Our system performed most poorly
on problems like problem P8 (Figure 1), that are often scaffolded into multiple steps in
ITS interfaces. Copilot by contrast had no consistent performance pattern, and showed
signs of leveraging prior domain-specific knowledge.

7 Conclusion

Future computational modeling work may investigate how these language compre-
hension abilities compare to human capabilities. In this work we’ve demonstrated two
means of generating knowledge from grounded operational instruction. This is how-
ever only a first step. Our system takes a relatively structured approach, compared to
the method using Copilot, making it conducive to many future refinements and inves-
tigations. This opens opportunities to investigate questions of how learners interpret
tutorial instruction, and how instruction and ITS hints may be improved as a result.

For ITS authoring purposes our crowd-worker results may understate the efficacy of
our approach. For instance, authors may get better at generating hints over time, or use
the experience as a starting point for authoring their own formulae directly—something
that is not obvious, especially if non-arithmetic functions are involved. Additionally,
the fairly small average number of incorrect formulae produced by both systems means
correct formulae can be easily selected from among a small set of candidates. Overall,
our method bodes well for incorperating natural language processing into ITS authoring
and computational models of student learning.

References

1. Aleven, V., McLaren, B.M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S., Ringen-
berg, M., Koedinger, K.R.: Example-tracing tutors: Intelligent tutor development for non-
programmers. International Journal of Artificial Intelligence in Education 26(1), 224-269
(2016)

2. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis—a general method for cogni-
tive model evaluation and improvement. In: International Conference on Intelligent Tutoring
Systems. pp. 164—175. Springer (2006)

3. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al.: Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021)

4. Honnibal, M., Montani, I.: spaCy 2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing (2017), to appear

5. MacLellan, C.J., Harpstead, E., Marinier III, R.P., Koedinger, K.R.: A framework for natural
cognitive system training interactions. Advances in Cognitive Systems 6, 1-16 (2018)

6. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the teacher: Tutoring simstudent leads
to more effective cognitive tutor authoring. International Journal of Artificial Intelligence in
Education 25(1), 1-34 (2015)

7. Weitekamp, D., Harpstead, E., Koedinger, K.: An interaction design for machine teaching to
develop ai tutors. CHI (2020)

8. Weitekamp, D., Harpstead, E., MacLellan, C.J., Rachatasumrit, N., Koedinger, K.R.: Toward
near zero-parameter prediction using a computational model of student learning. International
Educational Data Mining Society (2019)

9. Zou, Y., Lu, W.: Text2math: End-to-end parsing text into math expressions. arXiv preprint
arXiv:1910.06571 (2019)

