
A Mobile ITS for Invented Spelling Practice

No Author Given

No Institute Given

Abstract. Invented spelling is a common exercise administered in kinder-
garten classrooms to bolster students’ phonological awareness and other
early literacy skills in preparation for regular reading and spelling in-
struction. A correct invented spelling is composed of phonetically appro-
priate (but not necessarily correct) letters. For instance, ”jyraf” is a pho-
netically correct invented spelling for ”giraffe”. Prior work has demon-
strated that invented spelling can have a significant positive impact on
students’ future reading and writing. However, it is not an exercise that
is always feasible to facilitate effectively at scale since it typically is most
effective when children receive individualized feedback on their spellings.
In this work we present a mobile application that robustly provides feed-
back for invented spelling practice on nearly any target word. We out-
line the technical details of this intelligent tutoring system, including
our methods for implementing incremental feedback, the sounding-out
of invented spellings, and outer-loop adaptivity. Additionally we discuss
several interface design considerations that make our application user-
friendly and engaging to 4- to 6-year-old learners and share some initial
user testing results.

Keywords: Invented Spelling · Mobile App · Intelligent Tutoring Sys-
tem

1 Introduction

Invented spelling is an exercise where students are encouraged to try spelling
words based on their current letter knowledge. Invented spelling practice en-
gages important prerequisite skills for reading and writing such as knowledge of
grapheme-phoneme (i.e. letter-to-sound) mappings and phonological awareness—
the ability to identify the individual sounds that make up words. Prior work has
demonstrated the importance of invented spelling as an early literacy skill. For
instance, Ouellete and Sénéchal [7] found that invented spelling mediates the
relationship between phonological awareness and word reading in kindergarten
and that invented spelling predicts word reading and spelling abilities in first
grade students.

Unlike traditional spelling exercises that have a single correct answer, in-
vented spelling lends itself to a broad spectrum of potentially correct answers,
and many degrees to which an answer can be incorrect. For instance, “trubl” is
a phonetically correct spelling for “trouble”, since all of the required sounds “T-
R-UH-B-L” are present. Although “trbr” and “trbl” are neither correct nor pho-
netically correct, “trbl” is closer to correct since only the vowel “UH” phoneme is

2 No Author Given

missing. Invented spelling gives students an emotionally low-risk way to engage
in spelling, and provides tutors opportunities to provide fine-grained feedback,
and celebrate students’ competencies. By lowering the bar for what counts as
correct, students can build confidence and feel empowered as spellers [10]. For
instance, Clarke [2] found that students whose teachers encouraged invented
spelling exercises tended to write longer stories with a greater variety of words,
than students expected to produce correct spellings.

Invented spelling practice represents a potentially high-impact domain for
implementing an intelligent tutoring system since facilitating invented spelling
requires considerable one-on-one feedback from adults. It is, however, a tech-
nically challenging domain to produce automated feedback for, since there are
many ways that invented spellings can be correct and many degrees to which they
can be incorrect. Moreover, invented spelling presents several design challenges
since ideally feedback must be conveyed in a manner that is understandable and
engaging to preliterate users, friendly enough to avoid emotional upsets, and
effective at facilitating learning.

Prior research on invented spelling provides two key considerations for effec-
tively facilitating invented spelling practice. Firstly, Levin and Aram [4] find that
invented spelling works best when the tutor sounds out the phonemes associated
with letters instead of only naming the letters so as to provide students with the
correct phoneme-grapheme (i.e. sound-to-letter(s)) relationship. Secondly, prior
research [6, 9, 10] shows that the most effective mode of feedback to give in in-
vented spelling exercises is incremental: removing, correcting, or adding a single
letter in children’s invented spellings to make them more phonetically correct.
One explanation for this effect is that by providing just a single correction at a
time the tutors can minimize the cognitive load a student experiences in trying
to determine why corrections to their spelling are appropriate.

In this work we present a mobile intelligent tutoring system for invented
spelling practice based on the incremental feedback procedure outlined by Ouel-
lette and Sénéchal [6]. We begin by presenting an overview of our app and discuss
several design decisions we’ve made toward making the app usable and engaging
for kindergarteners. Next, we present our algorithm for producing feedback—a
dynamic programming based method that produces an optimal correction se-
quence for transforming phonetically incorrect invented spellings to phonetically
correct ones. This implementation draws inspiration from solutions to the re-
lated string-to-string correction problem [12]. We additionally demonstrate how
this algorithm can be extended to find optimal sounding-outs (i.e. phoneme se-
quences) for phonetically incorrect invented spellings. Finally, we discuss our
BKT [3] based implementation of outer-loop adaptivity [11] with a simple next-
problem selection policy that selects words that students are likely to get wrong
by a single letter.

2 An Invented Spelling Mobile ITS

Our mobile intelligent tutoring system is a cross platform application built
with ReactNative that can be used with Android or iPad tablets or in any

A Mobile ITS for Invented Spelling Practice 3

modern browser. The application is designed to be used by 4- to 6-year-old
children across several sessions. It is designed from login to signout to be used
by preliterate children independently, without the need for adult intervention.
After a student account is made they are given a personal password consisting
of a string of easily identifiable non-alphanumeric symbols. When the correct
sequence of symbols is entered, students immediately begin invented spelling
practice, which involves dragging available letter tiles to spell a target word.

(a) Login screen. (b) Invented spelling mobile ITS.

Fig. 1

When an invented spelling problem begins, the target word is presented with
the audio: “Let’s spell [word] [word-slow] [word]” (where [word] is the target
word), accompanied by an image depicting the target word. The target word is
spoken three times (slowly the second time), in order to ensure that students
clearly hear it, and to give them ample opportunity to shift their attention to
the app. If students miss or forget the word that they need to spell, they can
press on the image associated with the target word to have the audio repeated.
In order to reinforce the idea that students should attempt to spell words even if
they don’t know how to spell the word, we added an additional prompt triggered
by inactivity. Every 17 seconds if a student hasn’t begun interacting with the
app then the letter tiles will hop and wiggle to indicate that they are interactive
and one of the following audio prompts is randomly played:

– “Try out dragging some letters.”
– “Your spelling doesn’t have to be perfect, just try something out!”
– “Go ahead try some letters.”

The set of letter tiles are randomly arranged and consist of all of the letters
needed to spell the target word correctly, in addition to several additional random

4 No Author Given

Fig. 2: Wiggling tiles.

letters. In early user testing we found that presenting the entire alphabet led
students to spend a considerable portion of time searching for letters, but found
that an exhaustible set of 8-10 total letter tiles limited search time but was still
sufficiently challenging. Each letter tile contains a single grapheme—for example,
a single letter or a digraph such as “TH” or “CH”. To further reduce search
time, consonant tiles always precede vowels. In the spirit of Meyer’s multimedia
learning principles [5], we’ve opted to keep the design of our tiles simple to avoid
extraneous visual detail (like for instance varied font colors). Every grapheme
is written in large black capital letters in a bold serif font accompanied by its
lowercase form placed smaller in the bottom right corner. As a visual aid, vowel
graphemes have a pale red background while consonants have white one.

To spell the target word students drag letter tiles onto a line resembling the
blank lines of worksheets (Fig. 1.b) often used in kindergarten classrooms for
spelling practice. When placed, the letters move into place adjacent to each other
and can be rearranged by dragging. The student indicates that their spelling is
correct by pressing a green checkmark button. If any tiles have been placed and
no tiles have been interacted with for 10 seconds then the checkmark button will
hop and wiggle accompanied by the audio prompt: “when you’re done press the
green checkmark”. To prevent patterns of behavior where students just place
all of the tiles, and reinforce the objective of picking a subset of the available
letters, only two more tiles than the length the target word can be placed. Any
tiles that students try to place beyond this will not snap to the spelling line.

After the green checkmark button is pressed the feedback phase begins, sig-
nified by one of three audio prompts praising the student for their effort: “Great
job!”, “Cool spelling!” or “Nice work!”. At the start of the feedback phase the
best correction sequence between the target word and the student’s spelling is
computed in preparation of giving feedback (Section 3). First the application
sounds out the student’s spelling which is initiated by the prompt: “let’s sound
out what you spelled”. To find an appropriate sounding-out the best sequence
of phonemes is found (using the correction sequence, Section 3.3) for the placed
tiles. This is necessary to determine which phoneme should be spoken when a
grapheme could produce multiple possible phonemes, and in cases where a pair of
graphemes make one sound. For instance in “giraffe”, “g” makes the “J” sound,
and “ffe” collectively make the “F” sound. As each phoneme is spoken by the
app, the tiles associated with this phoneme expand and retract their borders as
a visual aid.

Next, if the student’s spelling is not phonetically correct, the first item in
the correction sequence is utilized to give incremental feedback that removes,
replaces, or adds a tile. To facilitate comparison the student’s tiles remain un-
moved during this process. First copies of the student’s tiles fall in from the
top of the screen and rest above the placed tiles, followed by the audio prompt:

A Mobile ITS for Invented Spelling Practice 5

Fig. 3: An instance of incremental feedback on the target word ”drip” for spelling
”drs”. ”s” is replaced with ”p”. The ”R” tile is expanded because the ”R”
phoneme of the corrected spelling is mid-way being sounded out.

“Let’s see if we can make your spelling a little closer to [word]”. Audio prompts
accompanied by animations narrate the feedback. For instance if the target word
“drip” was spelled “drs”, then the app would narrate “we’ll replace, ‘s’ with ‘p’
to make the ‘P sound”, as the copy of the “s” ascends off the screen and is re-
placed by a green colored “p” 1 Meanwhile the original “s”, which has remained
in place, is colored red. Finally the improved spelling is sounded out, followed by
the prompt: “This spellings sounds more like [word]”. If this corrected spelling
is phonetically correct or totally correct then the audio prompt states this. If
the student’s original spelling was phonetically or totally correct, they receive
an audio prompt indicating this. However, in the event that a spelling is pho-
netically, but not totally correct then tiles spelling out the correct spelling fall
in from the top of the screen accompanied by the prompt: “the correct spelling
for [word] is”, followed by audio naming each letter in order. Consequently, the
app facilitates correct spelling instruction only after the student can provide a
phonetically correct spelling.

Finally a screen is displayed with several outlines of silver stars followed by
the outline of a gold star, and simultaneously one of the three praise prompts
is played again. The stars are filled in in accordance with the number that the
student has earned based off of their spelling. Each silver star is earned for correct
phonemes, calculated as the total phonemes in the word minus the length of the
calculated correction sequence. The gold star is earned for producing the correct
spelling for the word. At the same time a count of the total number of stars of
each type earned (per session) tick up. After the star screen is finished animating,
a fresh problem is started. If the word was not spelled phonetically correct then
the same word is played again (up to a total of two consecutive times), otherwise
a new word is selected using the outer loop adaptivity algorithm (Section 4).

1 Note in this example that “p” is incorporated instead of “i”. The calculated correc-
tion sequences favor fixing missing or incorrect consonants (see Section 3.4)

6 No Author Given

3 Finding Correction Sequences for Invented Spellings

3.1 Backgound: The Wagner-Fisher Correction Sequence Algorithm

The string-to-string correction sequence problem [12] is to find the minimum
cost sequence of edit operations needed to change one string into another. The
Wagner-Fischer algorithm is a classic dynamic programming approach to solving
this problem that recursively breaks down the problem into simpler subproblems.
The algorithm proceeds by calculating the levenshtein distance between the two
strings, defined as the minimum number of edit operations needed to transform
a string A into a string B. This is achieved by iteratively filling a matrix D with
the levenshtein distance between each prefix of A and B. The matrix can be
filled one row or column at a time using previously computed values.

Algorithm 1 Compute Levenshtein (for Wagner-Fisher algorithm)

Input(A : String, B : String)

1: D[0.., 0] := 0
2: for i := 1 to |A| do D[i, 0] := i

3: for j := 1 to |B| do D[0, j] := j

4: for i := 1 to |A| do
5: for j := 1 to |B| do
6: substitutionCost = 1 if A[i] = B[j] else 0
7: msubstitute := D[i− 1, j − 1] + substitutionCost;
8: minsert := D[i, j − 1] + 1;
9: mdelete := D[i− 1, j] + 1;
10: D[i, j] := min(msubstitute,minsert,mdelete);

11: return D

After the levenshtein distance matrix D has been computed, the final ele-
ment of the matrix holds the levenshtein distance between the input strings.
The edit sequence between the strings can be obtained by tracing back from
the final element in the matrix back to the first element along the path with
the minimum levenshtein distance values. Diagonal steps that have a change in
distance represent substitutions, diagonal steps with no change in cost represent
no-edit, steps along the first dimension represent deletions, and along the sec-
ond represent insertions. Alternatively the edit sequence can be maintained in a
forward fashion by filling an equal sized matrix M with the edit sequence so far
for each prefix pair. This method is typically not used since it is somewhat less
memory efficient (an edit sequence must be stored for O(|A||B|) prefix pairs),
but serves as a good analogy to the method we describe in the following section
for finding correction sequences for invented spellings.

3.2 An algorithm for producing invented spelling correction
sequences.

Finding correction sequences for invented spellings poses additional chal-
lenges on top of the classic string-to-string correction sequence problem. Firstly,

A Mobile ITS for Invented Spelling Practice 7

two invented spellings can be phonetically equivalent even if their characters
are not equivalent, so we cannot rely on simple character equality checks to
determine whether a substitution or no-edit operation is appropriate. Second,
the goal sequence is a sequence of phonemes and the input sequence is a set of
letters which need to be broken up into graphemes that can produce the target
phonemes. Since we are not dealing with a simple character to character map-
ping it is necessary to sometimes make jumps of multiple characters to handle
multi-character graphemes. Third, the sequence of letters from the input spelling
can have multiple feasible pronunciations. Consider for instance a mispronun-
ciation of the character sequence “foothill”, that pronounces the “t” and “h”
separately instead of as the digraph ”th”. Fourth, there are rare cases where a
single character can produce multiple phonemes such as the letter “x” which can
produce the phoneme sequence “K,S”.

Some raw English language data is necessary as input to this algorithm. We
utilize the Carnegie Mellon University Pronouncing Dictionary to find phoneme
sequences for over 134,000 English words encoded using the ARPAbet phoneme
set [1]. We have also mined, and hand cleaned this data to produce an addi-
tional dictionary that maps phonemes to lists of possible graphemes (i.e. letter
sequences). For instance the hard “c” sound represented as “K” maps to the list
[“c”, “ck”, “k”]. In order to align feedback with phoneme to grapheme relation-
ships that kindergarteners would likely encounter, some infrequent graphemes
have been removed from this set, including for instance those that only appear
in French words (like “oux” in “roux”).

Several subroutines in our algorithm depend on a PartialSpelling data struc-
ture which has the following properties:

c l a s s P a r t i a l S p e l l i n g :
s p r e f i x g raphemes : s t r i n g []
s p o s t f i x l e t t e r s : s t r i n g []
s p re f i x phonemes : s t r i n g []
w pref ix phonemes : s t r i n g []
w post f ix phonemes : s t r i n g []
l e v d i s t : f l o a t
parent : P a r t i a l S p e l l i n g
c o r r e c t i o n : Sp e l l i n gCo r r e c t i on

Analogous to the Wagner-Fisher algorithm we use dynamic programming
to incrementally solve the correction sequence problem. But instead of filling a
matrixD with levenshtein distances we fill a matrixM with PartialSpellings. The
first dimension of the matrix M represents prefixes of the characters of the input
spelling, and the second dimension represents prefixes of the phonemes sequence
for the target word. Each PartialSpelling object is analogous to a prefix pair in
the Wagner-Fisher algorithm, but while matrix elements in the Wagner-Fisher
algorithm encode the Levenstein distances between prefixes, in our algorithm
each matrix element holds a PartialSpelling object.

A PartialSpelling holds the sequence of phonemes and graphemes for a spelling
prefix (s prefix phonemes and s prefix graphemes) and the remaining letters

8 No Author Given

in the spelling (s postfix letters), in addition to a prefix for the sequence of
satisfied target phonemes (w prefix phonemes) and the remaining phonemes
(w postfix phonemes). PartialSpellings also hold the phonetic levenshtein dis-
tance between the committed s prefix phonemes and the target word’s phoneme
sequence (lev dist). Additionally, the PartialSpelling contains a reference to its
parent PartialSpelling (parent), and a data structure called a SpellingCorrection
(correction) that encodes information about the insertion, deletion, replacement,
or no-edit operation that produced the PartialSpelling.

PartialSpellings have several methods that produce new child PartialSpellings
to iteratively build out the matrixM . next matchings() looks for graphemes that
that appear next in s postfix letters and can be pronounced as the next phoneme
in w postfix phonemes. For each such match next matchings() returns a new Par-
tialSpelling where the found phoneme-grapheme pair is appended to the prefix of
the current PartialSpelling and removed from the postfix. Every match found by
next matchings() constitutes a viable no-edit operation. insert() returns a new
PartialSpelling where the next phoneme-grapheme pair at the head of the word
postfix is removed and added to the current spelling prefix. delete() returns a
new partial spelling where the next letter from s postfix letters is removed. Fi-
nally, substitute() creates a new PartialSpelling that combines the changes made
by insert() and delete—one letter from s postfix letters is removed and the next
phoneme-grapheme pair is moved to the prefix. insert() and substitute() both
take the breakdown of phonemes and graphemes from the target word as in-
put in order to get the grapheme associated with the phoneme at the head of
w postfix phonemes.

Algorithm 2 shows pseudocode for our invented spelling correction sequence
algorithm which takes a spelling S and a target word W and outputs a correction
sequence to edit S such that it is phonetically equivalent toW . First the phoneme
sequence P for word W is found from the CMU Pronouncing Dictionary (line
1). Then a simple greedy search process finds the best breakdown B of letters
to grapheme-phoneme pairs in the target word (line 2). First a starting partial
spelling is placed at M [0, 0] with s postfix letters equal to the input spelling and
w postfix phonemes equal to the phonemes for the target word (line 4). Then the
delete() and insert() commands are called to build out the base cases in the first
column and row (lines 5-6). Next, the matrix M is looped through along its two
dimensions, and on each iteration each partial spellings inM [i−1, j−1] is checked
with next matchings() to produce a series of partial spellings where the next
letters in the partial spelling’s s letter postfix can be moved to their prefixes with
a no-edit operation (lines 9-14). Phoneme-grapheme pairs associated with these
matchings can each have lengths equal to or greater than one, and are placed in
the appropriate elements of the matrix M . At this stage in the body of the loop if
M [i][j] is empty then it is filled with substitutions, insertions, or deletions from
the PartialSpellings in M [i − 1][j − 1], M [i][j − 1], or M [i − 1][j], respectively
depending on which one contains the PartialSpelling with the minimum lev dist
(lines 15-27). Finally the correction sequence is produced by starting with the
PartialSpelling in the final element of the matrix M [|S|, |P |], and extracting

A Mobile ITS for Invented Spelling Practice 9

Algorithm 2 Compute Correction Sequence

Input(W : String, S : String)

1: P =: word phonemes(W)
2: B =: best break down(W,P)
3: M =: new empty Matrix of size (|S|, |P |)
4: M [0, 0] =: PartialSpelling(s postfix letters =: S,w postfix phonemes =: P)
5: for i := 1 to |S| do M [i, 0] := M [i− 1, 0].delete()

6: for j := 1 to |P | do M [0, j] := M [0, j − 1].insert()

7: for i := 1 to |S| do
8: for j := 1 to |P | do
9: if M [i− 1][j − 1] is not empty then
10: for each match in M [i− 1][j − 1].next matchings() do
11: k =: i−match.phoneme length− 1
12: r =: j +match.grapheme length− 1
13: if M [k][r] is empty or M [k][r].lev dist > match.lev dist then
14: M [k][r] =: match

15: if M [i][j] is empty then
16: msubstitute =: M [i− 1][j − 1].lev dist
17: minsert =: M [i][j − 1].lev dist
18: mdelete =: M [i− 1][j].lev dist
19: m =: min(msubstitute,minsert,mdelete)
20: if m = msubstitute then
21: ps =: M [i− 1][j − 1].substitute(B)
22: else if m = minsert then
23: ps =: M [i][j − 1].insert(B)
24: else
25: ps =: M [i− 1][j].delete()

26: if M [i][j] empty or M [i][j].lev dist > m+ 1 then
27: M [i][j] =: ps

28: ps =: M [|S|, |P |]
29: corr seq =: []
30: while ps.parent ̸= null do
31: if ps.correction ̸= null then
32: corr seq =: [ps.correction, . . . corr seq]

33: ps =: ps.parent

34: return favor consonant corrections(corr seq)

the corrections from each partial spelling (lines 28-32). A final post-processing
method described in Section 3.4 modifies the correction sequence before it is
returned (line 34).

Table 1 shows a few examples of target-words, spellings, correction sequences,
and the final spelling after the correction. Note that after the correction sequence
is applied the final spelling is phonetically correct, and retains all phonetically
correct elements of the source spelling like “K” instead of “C” to spell “SKRAP”.

10 No Author Given

Target Word Spelling Correction Sequence
Final

Spelling

SCRAP SMKRMOP remove(1,1), replace(3,1,A), remove(4,1) SKRAP

TRIP PTRD remove(0,1), replace(2,1,P), insert(2,I) TRIP

PITTSBURGH BITSBG replace(0,1,P), insert(5,UR) PITSBURG

Table 1: Application of correction sequences on phonetically incorrect spellings.
Correction sequence items take arguments of the form (index, length, new value).

3.3 Finding Optimal Sounding-Out

Finding a correct sounding-out for an incorrect invented spelling is nontriv-
ial because it can have incorrect or missing graphemes. However, the phoneme-
grapheme breakdown of the target word of the spelling can help disambiguate
which phonemes should be used. In the process of finding the optimal cor-
rection sequence, an optimal alignment between the source spelling and the
phonemes of the target word was found. So we can simply draw from phoneme-
grapheme breakdown found in the final PartialSpelling in the matrix M . For
extra graphemes in the input spelling that would be deleted by the correction
sequence we can simply guess the pronunciation by picking out a hard-coded de-
fault phoneme for each grapheme. For sequences of multiple letters that would
be deleted, we use a greedy matching process that favors breakdowns with fewer
longer graphemes. For instance an extraneous ”ee” in a spelling would be pro-
nounced ”IY” instead of ”EH,EH”.

3.4 Reordering Correction Sequences to Favor Consonant
Corrections.

Early in the process of learning to spell, students often spell words only using
consonants, for example, the spelling “grs” for “grass” [8]. Common abbrevia-
tions like “hwy” for “highway” or “mgmt” for “management” shed some light
on this phonomemna—it is all too easy to impute the sound of a vowel while
pronouncing the individual sounds of consonants. We have no evidence to sug-
gest that learning to spell with consonants prior to introducing vowels is of any
particular learning benefit, but in the interest of adapting to the typical pattern
of spelling that we’ve observed in our interactions with kindergarteners, we’ve
introduced a subroutine favor consonant corrections() to our adaptive feedback
to favor the insertion of missing consonants over vowels. For instance in the
second example in Table 1, the original correction sequence was [remove(0,1),
replace(2,1,I), insert(3,P)], but after rearrangement it becomes [remove(0,1), re-
place(2,1,P), insert(2,I)]. Note that the replace() correction is transferred from
the “I” to the “P”, demoting the I to an insert() correction.

4 Outerloop Adaptivity with BKT

We use an implementation of Bayesian Knoweldge Tracing (BKT) [3] to
provide outerloop adaptivity for selecting next problems. For an initial knowledge

A Mobile ITS for Invented Spelling Practice 11

component model we track one knowledge component for each letter in the
alphabet plus the three diagraphs “th” “ch” and “sh”. Additionally we track
knowledge components for 19 different two letter blends (like ”sp”, ”fr”, ”gl”,
or ”nt”). To limit the initial letterset that students are presented, we break
knowledge components into 13 levels where each level introduces a few more
letters or blends, and with them additional words. Each new level is added into
the total available word pool when BKT predicts that the student knows every
available word knowledge component with at least 60% probability, and at least
half of the available blend knowledge components with at least 60% probability.

When a new problem is requested it is sampled randomly from a distri-
bution of all unlocked words. The unnormalized probability of selecting each
word is computed as the absolute difference in the BKT prediction between
the knowledge components with the lowest and second lowest BKT prediction
probabilities:

P (word) = | min
k1∈K

(BKT (k1))− min
k2∈K, k2 ̸=k1

(BKT (k2))|

We’ve chosen this method of scoring next words because it roughly favors
words where all but one letter or blend has been mastered by the student.

5 Pilot Testing

5.1 Methods

We pilot tested the version of our app presented here with five kindergarteners
from a local lab school. We asked our participants to spend 10 minutes playing
with our app. We introduced the participants to the app with a brief verbal
introduction, and followed up after the 10 minute session with a visual likert
scale assessment using sad through happy faces. The 1/sad-face indicated that
they ”definitely wouldn’t want to play this game again”, and the 5/happy-face
indicated that they ”definitely would want to play this game again”. We also
asked the participants for their general impression of the app.

5.2 Results

All five participants completed the 10 minute session. None of the participants
had trouble completing problems, and the participants exhibited a wide range of
invented spelling capability. The participants generally understood and followed
the audio prompts, with few exceptions. We observed a mix of behaviors that
included, for instance, randomly placing tiles, spelling words completely correct,
repeating the same incorrect spelling on the second attempt, and improving
spellings in response to the given feedback on the second attempt. We observed
a general pattern of students trying new spellings, or following suggestions from
the feedback as they used the app more. Several participants verbally indicated
that they enjoyed seeing the animation for earning stars at the end of each
problem. On the happy/sad-face likert scale, three students rated the app with
a 5, one rated it a 4, and one rated it 1 . The most positive verbal impression
we recieved was that ”the app helped me spell a lot of new words that I didn’t

12 No Author Given

know”. The most negative verbal impression indicated that there was a different
educational app that the participant preferred instead.

5.3 Discussion

Our impression from this small pilot study was that the app was usable
by the participants, fairly engaging, and enjoyable. In future work we hope to
gain a quantitative measure of the learning benefits of the app. However, our
initial observations are promising since we found that the app often succeeded
at providing feedback that students incorporated into their invented spellings,
and that users of the app showed an interesting in improving their spellings.

6 Conclusion

Invented spelling practice is a potentially high-impact domain since it is
effective at building core prerequisite skills for reading and writing, but requires
nuanced feedback typically only possible in a one-on-one tutoring setting. In
this work we’ve presented a robust algorithmic method for providing automated
adaptive invented spelling feedback embedded in a kindergartener friendly app.
Our initial pilot testing yields promising initial results for future work assessing
the efficacy of this innovative intelligent tutoring system.

References

1. The cmu pronouncing dictionary, http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2. Clarke, L.K.: Invented versus traditional spelling in first graders’ writings: Effects

on learning to spell and read. Research in the Teaching of English pp. 281–309
(1988)

3. Corbett, A.T., Anderson, J.R., O’Brien, A.T.: Student modeling in the act pro-
gramming tutor. Cognitively Diagnostic Assessment pp. 19–41 (1995)

4. Levin, I., Aram, D.: Promoting early literacy via practicing invented spelling: A
comparison of different mediation routines. Reading Research Quarterly 48(3),
221–236 (2013)

5. Mayer, R.E.: Multimedia learning. In: Psychology of learning and motivation,
vol. 41, pp. 85–139. Elsevier (2002)

6. Ouellette, G., Sénéchal, M.: Pathways to literacy: A study of invented spelling and
its role in learning to read. Child development 79(4), 899–913 (2008)

7. Ouellette, G., Sénéchal, M.: Invented spelling in kindergarten as a predictor of
reading and spelling in grade 1: A new pathway to literacy, or just the same road,
less known? Developmental psychology 53(1), 77 (2017)

8. Paul, R.: Invented spelling in kindergarten. Young Children pp. 195–200 (1976)
9. Pulido, L., Morin, M.F.: Invented spelling: what is the best way to improve literacy

skills in kindergarten? Educational Psychology 38(8), 980–996 (2018)
10. Treiman, R.: Beginning to spell in english. Reading and spelling: Development and

disorders pp. 371–393 (1998)
11. VanLehn, K., Ohlsson, S., Nason, R.: Applications of Simulated Students: An Ex-

ploration. Journal of Artificial Intelligence in Education 5(2), 1–42 (1994)
12. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of

the ACM (JACM) 21(1), 168–173 (1974)

