Toward Stable Asymptotic Learning with
Simulated Learners

No Author Given

No Institute Given

Abstract. Simulations of human learning have the potential to open
a vast number of opportunities for learning technologies including Al
supported authoring and automated testing of intelligent tutoring sys-
tems, enhanced student knowledge modeling, and simulated learning-
by-teaching companions for both student and teacher learning. To date,
simulated learner technologies have demonstrated considerable potential
for many of these use cases, but the scope and reliability of simulated
learner applications has been limited by the robustness of existing sys-
tems. In this work we identify several impediments to producing perfect
asymptotic learning performance in simulated learners, introduce one sig-
nificant improvement to the Apprentice Learner Framework to this end,
discuss persisting causes of asymptotic error in our system and broadly
discuss possible reframings of inductive task learning that address the
need for new types of working memory.

Keywords: Simulated Learners - Cognitive Modeling - Authoring Tools

1 Introduction

Simulated learners are simulations of human learning that learn to perform tasks
through an interactive process of demonstrations and feedback provided either
by a human tutor or an Intelligent Tutoring System (ITS). Simulated learn-
ers have the potential to revolutionize learning technologies on a number of
fronts. VanLehn suggested that simulated students could be used as teacher
training tools, proxies for student collaboration, and as a means of testing and
refining learning technologies in advance of classroom deployment [24]. Matsuda
demonstrated that students can learn by teaching a simulated student called
SimStudent [18], and Li showed the potential of simulations of human learning
for cognitive model discovery [12]. Additionally, Matsuda, Maclellan, and Weit-
ekamp [17][14][25] have demonstrated the use of simulated learners as a potential
means of authoring ITSs [23], such as cognitive tutors [7], more efficiently than
comparable methods [2] that do not employ simulated learners.

Across each of these use cases, a key consideration arises in how to evaluate
different simulated learner models. Koedinger identified a number of standards
by which competing simulated learner systems may be evaluated [8]. These in-
clude the generation of cognitive models that show close fit to student data when
used with hierarchical mixed effect methods such as AFM[6], the generation of

2 No Author Given

erroneous actions reflective of human student behavior [26], and an agreement
between human and simulated learners in error reduction per learning opportu-
nity.

In this work we are concerned with producing simulated learners that exhibit
perfect asymptotic performance, the performance of the simulated learners after
considerable practice on a particular type of problem. This goal is important
for purposes of quickly and robustly authoring ITSs with simulated learners, so
that the resulting ITSs do not mark correct student responses as incorrect or
incorrect responses as correct.

Toward the goal of modeling human learning, one might note that the per-
formance of human learners often does not reach asymptotic perfection [4]. Nev-
ertheless, identifying challenges in achieving asymptotic perfection in simulated
learners may produce novel predictions for why humans continue to produce
mistakes after achieving mastery on various tasks.

We explore the asymptotic performance of simulated learners using the Ap-
prentice Learner (AL) Framework, a modular software library for creating sim-
ulated learners instantiating different mechanistic theories of learning [13]. In
recent work, Weitekamp et al. presented the first demonstration of an interface
and simulated learner implementation, using the AL Framework, whereby hu-
man users could train a simulated learner to near model-tracing completeness
[25]. Authors could employ methods for addressing incompleteness or inaccu-
racy in the learned model, but found them frustrating in some cases. If AL
could reach perfect performance more reliably and with less training, it would
provide a better authoring experience.

In this work, we better identify sources of learning failure that prevent AL
agents from achieving full accuracy. Further, we demonstrate new learning algo-
rithms and instructional methods that help AL avoid these failure modes and
approach perfect accuracy. Finally, we analyze sources of the few remaining er-
rors and discuss potential remedies. In particular, we suggest extending AL’s
display-based learning and reasoning capabilities with a working memory that
replicates observed displays and facilitates subgoal-based learning and reason-
ing. These contributions advance understanding of inductive task learning and
point the way to improved asymptotic performance in systems such as ours.

2 Training Test Domain: Multi-column Addition ITS

To demonstrate issues in aysmptotic training behavior, we use mutli-column
addition as a simple prototypical example. We train our agents on an ITS im-
plemented with CTAT’s [1] nools [16] model tracer [5] that supports practice
on what is often called the “standard” or “traditional” algorithm for adding
large numbers, whereby the digits of the numbers to be summed are aligned in
columns, summed column by column, with an extra “carry” row that is used for
carrying the tens’ digit from one column to the next.

One of the challenges for simulated learners in this particular type of problem
is that they must induce skills that condition on information not immediately

Toward Stable Asymptotic Learning with Simulated Learners 3

L]

4 21

[]

present in the observed state of the problem. Assume, for a moment, that the
agent has taken the first two steps of the above problem and placed the 0 in
the ones digit and the 1 in the carry field of the tens column. To take these two
actions, instead of any other actions, the agent must have learned appropriate
conditions on each of its induced skills that suppress any actions other than
these two. Similarly, the next two actions must be taken only after the first two
actions are taken, and the skill for placing the 9 must be aware that it should not
wait for the carry field in its column to be filled in (since 14342 < 10). In other
words some skills’ conditions must test for the fact that the agent has mentally
suppressed certain actions. Finally, the agent must press the done button to
move on to the next problem. The rules for when the done button should be
pressed must invoke similar purely mental information. It would not suffice for
the agent to only press the done button when all of the fields were filled. In the
majority of cases this rule would fail. Instead, the agent must mentally account
for the fact that it has reached a point where there is nothing left to be done.
Thus, multi-column addition is a type of problem that cannot be solved
purely by “display-based reasoning”—reasoning on information directly in the
display[11]. In contrast, the rules for multi-column addition need to condition
on a domain specific accounting of which actions still need to be taken. To over-
come this issue our AL agents augment the problem state with every plausible
application of skills that they have learned, allowing them to reason about ac-
tions that could have been taken but were not. This effectively means that as
our agents learn new skills the richness of their perception of the problem grows.
It should be noted that the notation for multi-column addition can be altered
slightly to make it a display based reasoning problem. Whenever a student would
normally leave a box blank, they could instead be required to place a zero in
that box. Then the matter of conditioning on domain specific mental information
is no longer an issue, since no steps are mentally skipped and there is always
a set of conditions on visible features of the interface that can indicate which
skill should be applied next. We hypothesize that this alternative pedagogical
strategy is likely less confusing to simulated learners, and human learners as
well, especially in the early phases of learning. We focus our investigation on the
standard strategy because it is more generally representative of ITS domains.

3 A Brief Overview of the Apprentice Learner Framework

As previously stated Apprentice Learner agents learn in an interactive process
with an ITS or human author. An AL agent’s knowledge is distributed across

4 No Author Given

a number of skills (in the form of production rules) each capable of performing
a particular subtask. Initially, when the AL agent has no skills, or whenever it
does not know what to do for an observed problem state, it will ask the ITS for
a hint in the form of an example action that is correct for the next step of the
problem. The AL agent will use these examples of correct behavior to induce a
new Right-Hand-Side (RHS)—the “then” part of the if-then structure of a skill.

A RHS is a composition of domain general functions that produces an action.
For example, the RHS for the skill that carries the 1 in the previous problem
might be Mod10(Add(?.v, ?.v)) which takes two interface elements (the 7s) as
arguments, sums their values (the .v’s) and takes their one’s digit (i.e. the mod-
ulus of 10). In AL agents, RHSs are produced by a brute force forward chaining
process over a set of domain-general operations and the values currently present
in an interface. This RHS inference process is termed how-learning.

A found RHS can work for a particular example but fail to work in general, for
example another explanation an AL agent may come up with from the previous
example is Copy(?.v) or just copy the value of the second value in a column into
the carry slot. For 5394421 this would work for the first carry step, but would
fail in general. In the AL agents used in this study a skill is identified by its
RHS, so if the RHS happens to be wrong a new one must be induced, and the
old one must be overridden or discarded.

The other part of a skill, the left-hand-side (LHS), holds the preconditions for
firing a skill. In AL agents LHSs have three parts where, when, and which, and
each of these parts are learned and refined from positive and negative examples
via their own learning mechanisms. Where-learning learns a set of rules that
pick out a set of arguments for a RHS, for example all of the numbers above the
line in a column, and a “selection”, the field into which the evaluation of the
RHS will be placed. Where-learning is implemented by maintaining the specific-
to-general boundary set of a version space [19]. Roughly speaking, this where-
learning mechanism starts with a specific set of rules, that for example, bind
just to the particular interface elements that the RHS was induced from, and
apply generalizations of those rule sets by dropping conditions to accommodate
new examples as they are seen, to for example bind to the interface elements
in any column. In this work we’ll discuss situations where where-learning can
overgeneralize and bind to selections and arguments that it should not bind to.

When-learning learns the conditions, over the whole state, under which a skill
should fire given a proposed where-part binding. For example, a where-part bind-
ing to elements in the third column of a multi-column addition problem might be
proposed before the first or second columns have been handled. When-learning
would learn a set of conditions on the whole state relative to the where-part’s
proposed selection that prevents the rule from firing when it is not supposed to.
The AL agent implementation used in this work conditions the when-part on the
where-part by relabelling the state relative to the where-part’s proposed selection
(the field the action will be taken on). For example if there are three interface
elements in a row named “A”, “B”, and “C” respectively, and “C” is the where-
part proposed selection then the interface element identifiers “A”, “B”, “C”,

Toward Stable Asymptotic Learning with Simulated Learners 5

would be remapped to “sel.left_of.left_of”, “sel.left_of”, “sel”. Remapping the
state in this way allows the when-part conditions to generalize across where-part
bindings. For example, in a multi-column addition problem the same conditions
could apply to a skill applied to any column and for problems with any number
of columns. In general when-learning mechanisms can be any binary classifier,
since they simply must predict whether or not each possible where-part binding
ought to fire given the current problem state. In this study our agents use a
custom decision tree implementation similar to C4.5 [21]. The input to this tree
for training is simply a one-hot encoding of the triples (“object-id”, “attribute”,
“value”) present across each state (with “object-id” remapped relative to the
selection as previously noted), and a positive or negative label produced during
training feedback.

For a single problem state multiple where-part bindings can pass the learned
when-part conditions, leading to multiple possible applications of learned skills
to the same state. Which-learning learns a utility function over the passing skill
applications that is greatest for those skill applications that are most likely to
be correct. In the baseline AL agent implementation this utility value is simply
the proportion of times that a particular skill has received positive feedback.

4 Experiment 1: Addressing Lingering Weak and
Overgeneral Skills

AL agents may need to observe several examples of taking particular problem
steps to induce the correct RHS for the true skill associated with that kind of
step. In the process, skills are induced that have incorrect RHSs that do not
consistently produce correct actions. Skills with incorrect RHSs are weak be-
cause they fail to produce the correct action in general. Weak skills will tend
to be buried by building up a low which-part utility through repeated negative
feedback, whereas correct skills may accumulate some negative feedback as their
when-part conditions are refined and fewer later on. Weak skills tend to accu-
mulate more negative feedback since they can make both when-type errors and
errors of how an action is taken. Consequently correct skills tend to override
weak skills by accumulating a higher which utility. Prior work with simulated
learners has shown that overriding via which utility works well in many domains
[15], but we have identified some circumstances that necessitate a revaluation of
this method.

For instance, it is possible for RHSs to be misattributed to the wrong skill.
Consider for example, the case of an untrained simulated learner seeing 2154846,
and asking for examples of how to do the first few steps. Adding the 5 and 6
produces 11, so the first two actions will be to place a 1 below and carry a 1 to
the next column. Regardless of which of the two actions is taken first, any RHS
induced to explain the first action also explains the second since both actions
have the same value. If a RHS is induced that is correct for either action then
both actions will be attributed to the same skill (one of them is misattributed)
even though in reality there should be two skills. Since the interface elements

6 No Author Given

on which the two actions act are different, the where-learning mechanism for
that skill will over-generalize the conditions constraining legal bindings of the
selection field causing the agent to apply the skill in a number of absurd ways.
Another possible source of where-part overgeneralization is user error if an agent
is being trained interactively. Prior to this work AL agents had no way to redress
these sorts of overgeneralization issues.

4.1 Two Methods for Addressing Overgeneralization Errors

To address overgeneralization issues in AL agents we present two possible im-
plementation changes and evaluate each independently. First, we implement a
means for faulty skills to be removed including those that have overgeneralized.
Second, we implement a where-learning mechanism that is capable of undo-
ing generalization errors. A key observation in both proposed implementation
changes is that faulty skills, either those with incorrect RHSs or overgeneralized
where-part rules, will tend to make more errors than non-faulty ones, especially
late in the training process. From a cognitive standpoint these can be thought of
as persistent weak hypotheses of the true procedure. But these weak hypotheses
should not persist indefinitely in the face of negative reinforcement, and should
eventually be given up on.

Our first implementation change is to add a new removal utility, a number
between 0 and 1 that when lowered below a threshold of .2 signals that a skill
should be removed from an agent. We try three different functions of “p” and
“n” (the numbers of instances of positive and negative feedback) for this utility:
1) the proportion correct p/(p+n) (same as the which utility) 2) double counted
negatives p/(p+2n), and 3) nonlinearly counted negatives p/p+n+1/4n?). Non-
linearly counted negatives implements the intuition that skills that persistently
produce errors after considerable training are more likely to be faulty than skills
that only produce errors initially while a skills’ when-part rules are still being
refined.

Our second implementation change introduces a fourth condition called ”re-
covering where” that enables overgeneralized where-part conditions to return to
a more specific state. Each newly generalized set of where-part conditions has its
own removal utility that is updated, when applicable, with positive or negative
feedback, and is removed when the utility calculated on the counts of positive
and negative feedback falls below a threshold of .5.

4.2 Results of Implementation Changes

For all tested variations of the two proposed implementation changes we ran
100 agents on 100 3x3 multi-column addition problems. The first problem is
always fixed to 215+846 to ensure that a large number of the agents exhibit the
where-part overgeneralization issue, and the remaining 99 problems are sampled
randomly.

Toward Stable Asymptotic Learning with Simulated Learners 7

10 recovering where
plip +n)
o8 == pllp+2n)
— 1.2
o pllp+n+307)
= 06
o
5
= 04
[l
0.2
N
-‘"ﬁ'“"""""'-’-p--_,-’--\.,H--g.n—-a__,‘\-_,‘_..‘,-.,,...
0.0
o 20 40 &0 80 100

problem

Fig. 1: Comparison of four recovery methods from where-part overgeneralization

Among the implementations of skill removal utility, nonlinearly counted neg-
atives (i.e. “p/(p+mn+1/4n?)”) was the only removal utility function that reli-
ably removed overgeneralized and persistent weak skills. Our implementation of
where-part generalization removal was essentially ineffective. We suspect that a
large contributing factor to this is that each competing where-part generalization
shares a when-learning mechanism, meaning that even if bad generalizations are
eliminated, eventually a considerable number of unusual training instances cen-
tered around irrelevant selection fields will remain in the when training history,
making it far more challenging to establish a set of consistent when-part con-
ditions. Whole skill removal is likely more effective than generalization removal
since removing an entire skill allows for a new skill to be induced in its place,
giving when-learning a clean slate to work with.

5 Experiment 2 : An Analysis of Remaining Sources of
Error

In the previous section we demonstrated that where-part overgeneralizations
can be more quickly detected and removed by using a utility function that puts
greater (non-linear) weight on higher failure counts. However, this technique does
not achieve perfect performance as the average error after 40 problems remains
at about 1%. After 40 multi-column addition problems we have found that agents
have consistently arrived at a set of skills with correct RHSs and appropriately
generalized where-part rules, however, some acquired when-part conditions are
fully not accurately scoped. The decision tree when-learning mechanism some-
times produces incorrect behavior whether run with both a well established
CART [9] based scikit-learn implementation [20] and our own implementation
built with numba [10], a just-in-time compiler for python.

Small amounts of error are generally expected as a matter of course when us-
ing any kind of machine learning. However, to achieve authoring of a correct I'TS,

8 No Author Given

we seek perfect performance. In our case the problem posed to when-learning
has at least one correct answer and no sources of noise. Since we implemented
the production rules for the multi-column ITS that the AL agents train on, we
know that the true when-part conditions are within the scope of what a decision
tree can learn. Additionally we know that the decision trees produced by our im-
plementation always completely split the training examples, so there is not any
underfitting of the data. The trees do however tend to contain more conditions
than we know to be necessary, meaning that the remaining error is likely due to
overspecialization of the trees. The main goal of the experiment that follows is
to uncover the nature of this overspecialization.

One hypothesis is that even after training on dozens of problems our agents
are not exposed to a diversity of edge cases, and errors persist asymptotically
as edge cases are randomly encountered. For example, one class of edge case
arises from the fact that our agents typically learn two separate skills for taking
carry steps, one for when summing three numbers (“carry3”) and another for
when summing two numbers (“carry2”). Any skill that must condition on a carry
step being mentally skipped must generate conditions functionally equivalent to
checking that “carry2”!=1 and “carry3”!=1 in the previous column. However,
for most problems the values of applying ”carry2” and ”carry3” are the same.
So conditioning on only one of them would suffice. An edge case arises in a
problem like 3474258 where applying ”carry2” in the second column (tens(4+5)
= 0) has a different value than applying ”carry3” (tens(3+6+1) = 1). In this
case an agent that had learned a when-part conditioned on either “carry2”!=1
or “carry3”!=1 but not both would produce an error.

5.1 Results of Training with Edge Cases

To test this hypothesis, we created 20 edge case problems that we expected to
cause an agent using under- or over-specialized when-part conditions to produce
an incorrect action in multi-column addition problems. We shuffled these edge
case problems together with 20 random problems, and injected these 40 problems
at the start of training in the “initial edge cases” condition, and after 20 random
problems in the “delayed edge cases” condition. We compare these two new
training sequences to a purely random sequence of 100 problems. Additionally,
we ran these three training sequences with a display-based reasoning friendly
implementation of a multi-column addition where the tutoring system requires
the learner to explicitly enter zero when there is no carry.

Results from this simulation can be seen in Figure 2. These results confirm
our intuition that a display-based reasoning version of the multi-column addition
ITS is easier for AL agents to learn. All conditions achieve essentially perfect
asymptotic behavior on this version of the ITS. However, in the normal imple-
mentation of multi-column addition all training sequences produce roughly the
same .004 error in the last 20 problems.

error-rate

10°

107!

Toward Stable Asymptotic Learning with Simulated Learners 9

Traditional Addition

Display-Based Reasoning Addition

random
—==- initial edge cases
== delayed edge cases

AR

.
EURN PTG

error-rate

107t

random
A === initial edge cases
== delayed edge cases

\
\
\
\
1

y
\
LN
Al
AT
1
Vo

20 40 60 80 100
problem

] 0 40 60 80 100
problem

Fig.2: Average error rate per training problem. Traditional multi-column ad-
dition (left) and display based reasoning friendly version (right). Trained with
random (orange), initial edge case (blue), and delayed edge case (green) training
sequences. The vertical axis is in log scale in the interval [10°, 1072] and linear
thereafter. Values are smoothed horizontally with a sigma=1.3 gaussian filter.

5.2 Discussion of Remaining Asymptomatic Error

Since injecting edge cases does not appear to produce any significant effect on
the asymptotic performance of our simulated learners, we can conclude that the
remaining errors do not arise from an initial lack of exposure to edge cases in the
random condition. Rather, the remaining asymptomatic errors can feasibly be
explained by inaccurate specializations in when-part rules. Decision tree methods
employ a divide-and-conquer strategy [21], meaning conditions introduced higher
in the tree will tend to be supported by more data relative to deeper nodes that
are more likely to handle infrequent edge cases and are more prone to spurious
associations. By the end of training the when-part conditions learned by our
agents recover several of the conditions embedded in the ITS, but the conditions
that come later in each term only approximate more general conditions. Consider
the following set of conditions learned for the Add2 skill.

‘ Raw Feature Description

(’contentEditable’, .r)==False

A field to right is filled in
B |(Div10(Add(?.v,?.v)), .a.a.a, .r.a.a, .r.a)l=1

C

D

carry2 does not produce 1 in this column
3(Div10(Add(?.v,?.v)), .r.a.a.a, .r.r.a.a, .r.r.a) carry2 is applicable in column to right

3(Div10(Add(?.v,?.v)), .a.a.a, .r.a.a, .r.a) carry2 is applicable in this column
Rule: ABC’+ABCD (i.e. AB(C’+CD))

The learned conditions A and B are exactly the same as two of four con-
ditions in the equivalent production rule in the ITS, however, the disjunction
C’+CD, which is learned deeper in the tree, is only a weak approximation of
the other two conditions. This disjunction produces the correct behavior in the
vast majority of cases. However, the cases in which it would fail are not specific

10 No Author Given

to any of the identified edge case problems, but may arise if skills are applied
in a novel order because the relative which utility changes between them. A
human author using the interactive training methods presented by Weitekamp
[25] would likely quickly eliminate any incorrect specializations of this sort since
authors can give feedback to all conflicting next steps proposed by an agent.
Thus, these particular sorts of incorrect specializations are likely less of an is-
sue in an authoring environment. In future work we plan to explore alternative
methods of inductive rule learning that may produce more parsimonious rules.
For example, some brute force search methods [22] have been shown to produce
more succinct rules than existing tree methods.

The remaining .004 average asymptotic error in the traditional multi-column
addition tutor is likely small enough to be admissible for the purposes of hu-
man modeling. However, the issues of incorrect specializations in the when-part
may be exacerbated in more complex environments. The current design of these
agents makes an assumption common to the framing of autonomous Al systems,
where an agent’s next action is purely a function of its current state. However,
there may be alternative framings that additionally incorporate some variation
of the idea of a persisting mental state or working memory. To this end we offer
three possibilities which may operate in combination:

1. Introduce a theory of memory activation such as those outlined in ACT-R [3].
This could simplify condition learning problems by operating as a form of at-
tention mechanism. Features, whether visible or induced, are probably more
likely to be relevant if they have been considered recently and frequently.

2. Add a form of subgoal induction that could simplify the learning of proce-
dure conditions, by spreading condition learning across skills. For example,
the multi-column addition procedure has a recursive structure of subgoals
for adding and carrying each column. If the system can acquire rules with
subgoals, going beyond display-based reasoning, it may additionally make
induced rules more understandable to authors.

3. Reframe problems as display based reasoning problems, making them easier
to learn. An agent’s learning may be scaffolded with these simpler framings
of problems and then graduated to non-display based versions during which
an agent may rely on a mental display to account for skipped steps, and
other mental phenomena.

6 Conclusion

In this work we have identified challenges to achieving asymptotic performance
with simulated learners and remediated sources of persistent asymptotic error in
simulated learners implemented with the Apprentice Learner Framework. Fur-
thermore, we have analyzed small remaining sources of asymptotic errors in this
system. We generate the novel prediction that human multi-column addition
learning will be enhanced by encouraging explicit entry of a 0 carry. Finally,
we suggest that AL can be further improved by adding a working memory that
facilitates mental display-based and subgoal-based learning and reasoning.

Toward Stable Asymptotic Learning with Simulated Learners 11

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor au-

thoring tools (ctat): Preliminary evaluation of efficiency gains. In: International
Conference on Intelligent Tutoring Systems. pp. 61-70. Springer (2006)

Aleven, V., Sewall, J., McLaren, B.M., Koedinger, K.R.: Rapid authoring of in-
telligent tutors for real-world and experimental use. In: Sixth IEEE International
Conference on Advanced Learning Technologies (ICALT’06). pp. 847-851. IEEE
(2006)

Anderson, J.R.: Act: A simple theory of complex cognition. American Psychologist
51(4), 355 (1996)

Anderson, J.R.: Cognitive skills and their acquisition. Psychology Press (1981)
Blessing, S.B., Gilbert, S.B., Ourada, S., Ritter, S.: Authoring model-tracing cog-
nitive tutors. International Journal of Artificial Intelligence in Education 19(2),
189-210 (2009)

Cen, H., Koedinger, K., Junker, B.: Learning factors analysis—a general method
for cognitive model evaluation and improvement. In: International Conference on
Intelligent Tutoring Systems. pp. 164-175. Springer (2006)

Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring
goes to school in the big city (1997)

Koedinger, K.R., Matsuda, N., MacLellan, C.J., McLaughlin, E.A.: Methods for
evaluating simulated learners: Examples from simstudent. In: ATED Workshops
(2015)

L. Breiman, J. Friedman, R.O., Stone, C.: Classification and Regression Trees.
Wadsworth, Belmont, CA (1984)

Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC. pp. 1-6 (2015)

Larkin, J.H.: Display-based problem solving. Complex information processing: The
impact of Herbert A. Simon pp. 319-341 (1989)

Li, N., Cohen, W.W., Koedinger, K.R., Matsuda, N.: A machine learning approach
for automatic student model discovery. In: Edm. pp. 31-40. ERIC (2011)
Maclellan, C.J., Harpstead, E., Patel, R., Koedinger, K.R.: The apprentice learner
architecture: Closing the loop between learning theory and educational data. In-
ternational Educational Data Mining Society (2016)

MacLellan, C.J., Harpstead, E., Wiese, E.S., Zou, M., Matsuda, N., Aleven, V.,
Koedinger, K.R.: Authoring Tutors with Complex Solutions: A Comparative Anal-
ysis of Example Tracing and SimStudent. In: The 2nd ATED Workshop on Simu-
lated Learners. CEUR-WS.org, Madrid, Spain (2015)

MacLellan, C.J., Koedinger, K.R.: Domain-general tutor authoring with apprentice
learner models. International Journal of Artificial Intelligence in Education pp. 1—
42 (2020)

Martin, D.: Nools. https://github.com/noolsjs/nools

Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the teacher: Tutoring sim-
student leads to more effective cognitive tutor authoring. International Journal of
Artificial Intelligence in Education 25(1), 1-34 (2015)

Matsuda, N., Keiser, V., Raizada, R., Stylianides, G., Cohen, W.W., Koedinger,
K.R.: Learning by teaching simstudent—interactive event. In: International Confer-
ence on Artificial Intelligence in Education. pp. 623-623. Springer (2011)

12

19.

20.

21.

22.

23.

24.

25.

26.

No Author Given

Mitchell, T.M.: Generalization as search. Artificial Intelligence 18(2), 203-226
(1982)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D.; Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)
Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
San Mateo, CA (1993)

Rijnbeek, P.R., Kors, J.A.: Finding a short and accurate decision rule in disjunctive
normal form by exhaustive search. Machine learning 80(1), 33-62 (2010)
VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems. Educational Psychologist 46(4), 197-221 (2011)
VanLehn, K., Ohlsson, S., Nason, R.: Applications of Simulated Students: An Ex-
ploration. Journal of Artificial Intelligence in Education 5(2), 1-42 (1994)
Weitekamp, D., Harpstead, E., Koedinger, K.R.: An interaction design for machine
teaching to develop ai tutors. In: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. pp. 1-11 (2020)

Weitekamp, D., Ye, Z., Rachatasumrit, N., Harpstead, E., Koedinger, K.: Inves-
tigating differential error types between human and simulated learners. In: Inter-
national Conference on Artificial Intelligence in Education. pp. 586-597. Springer
(2020)

