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Abstract. Simulations of human learning have shown potential for sup-
porting ITS authoring and testing, in addition to other use cases. To
date, simulated learner technologies have often failed to robustly achieve
perfect performance with considerable training. In this work we identify
an impediment to producing perfect asymptotic learning performance
in simulated learners and introduce one significant improvement to the
Apprentice Learner Framework to this end.
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1 Introduction

Simulated learners are simulations of human learning that learn to perform tasks
through an interactive process of demonstrations and feedback provided either by
a human tutor or an Intelligent Tutoring System (ITS). Simulated learners have
the potential to revolutionize learning technologies on a number of fronts, Mat-
suda demonstrated that students can learn by teaching a simulated learner called
SimStudent [11], and Li showed the potential of SimStudent for cognitive model
discovery [5]. Additionally, Matsuda, Maclellan, and Weitekamp [10][7][13] have
demonstrated the use of simulated learners as a potential means of authoring
ITSs [12], such as cognitive tutors [4], more efficiently than comparable methods
[2] that do not employ simulated learners.

For the purposes of using simulated learners as authoring tools it is desirable
that the performance of the simulated learner asymptotically tends toward zero
error. This capability ensures that the ultimate tutoring system behavior learned
by the agent does not mark correct student responses as incorrect or incorrect
responses as correct. We explore the asymptotic performance of simulated learn-
ers using the Apprentice Learner (AL), a modular software library for creating
simulated learners instantiating different mechanistic theories of learning [6]. In
this work, we identify a new source of learning failure that prevent AL agents
from achieving zero training error and demonstrate an adjustment to the AL
framework that allows it to recover from this failure mode. More broadly this
work identifies and remedies an issue unexplored by prior inductive task learning
literature, how an agent can recover from an incorrect induction made early in
training to asymptotically acquire a knowledge state functionally equivalent to
a set of ground-truth procedural knowledge.
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2 Training Test Domain: Multi-column Addition ITS

To demonstrate issues in aysmptotic training behavior, we use mutli-column
addition as a simple prototypical example. We train our agents on an ITS im-
plemented with CTAT’s [1] nools [9] model tracer [3] that supports practice
on what is often called the “standard” or “traditional” algorithm for adding
large numbers, whereby the digits of the numbers to be summed are aligned in
columns, summed column by column, with an extra “carry” row that is used for
carrying the tens’ digit from one column to the next.
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3 A Brief Overview of the Apprentice Learner Framework

Apprentice Learner agents learn a set of skills sufficient to apply target tasks
by learning in an interactive process with an ITS or human author. Each skills
that an AL agent learns has at least four parts how, where, when, and which,
that are each learned by different learning mechanisms. How-learning learns the
how-part a composition of domain general functions that produces an action.
For example, after trying a number of operations in different combinations how-
learning might learn the how-part Mod10(Add(?.v, ?.v)) which which takes two
interface elements (the ?s) as arguments, sums their values (the .v’s) and takes
their one’s digit (i.e. the modulus of 10).

A found RHS can work for a particular example but fail to work in general, for
example another explanation an AL agent may come up with from the previous
example is Copy(?.v) or just copy the value of the second value in a column into
the carry slot. For 5394421 this would work for the first carry step, but would
fail in general. In the AL agents used in this study a skill is identified by its
RHS, so if the RHS happens to be wrong a new one must be induced, and the
old one must be overridden or discarded.

Where-learning learns the where-part—a set of rules that pick out a set
of arguments for a RHS, for example all of the numbers above the line in a
column, and a “selection”, the field into which the evaluation of the RHS will
be placed. When-learning learns the when-part conditions, over the whole state,
under which a skill should fire given a proposed where-part binding. Finally
which-learning learns a policy for picking which potential application of a skill
should be applied if multiple pass the where- and when-part rules. Given space
constraints the reader should refer to prior work for further details about these
learning mechanisms [14] [6].
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4 Addressing Lingering Weak and Overgeneral Skills

AL agents may need to observe several examples of taking particular problem
steps to induce the correct how-part for the true skill associated with that kind
of step. In the meantime a weak (i.e. not correct in all situations) how-part can
be induced. Skills with weak how-parts will tend to be buried by building up
a low which-part utility through repeated negative feedback, whereas correct
skills may accumulate some negative feedback as their when-part conditions are
refined and fewer later on. Consequently correct skills tend to override weak
skills by accumulating a higher which utility. Prior work with simulated learners
has shown that overriding via which utility works well in many domains [8],
but we have identified some circumstances that necessitate a revaluation of this
method.

For instance, it is possible for how-parts to be misattributed to the wrong
skill. Consider for example, the case of an untrained simulated learner seeing
2154846, and asking for examples of how to do the first few steps. Adding the
5 and 6 produces 11, creating an opportunity for the same skill to be induced
and attributed to the first two actions (which should utilize seperate skills)—
placing a 1 below and carry a 1 to the next column. Since the interface elements
on which the two actions act are different, the where-learning mechanism for
that skill will over-generalize the conditions constraining legal bindings of the
selection field causing the agent to apply the skill in a number of absurd ways.

4.1 Two Methods for Addressing Overgeneralization Errors

To address overgeneralization issues in AL agents we present two possible im-
plementation changes and evaluate each independently. First, we implement a
means for faulty skills to be removed including those that have overgeneralized.
Second, we implement a where-learning mechanism that is capable of undo-
ing generalization errors. A key observation in both proposed implementation
changes is that faulty skills, either those with incorrect RHSs or overgeneralized
where-part rules, will tend to make more errors than non-faulty ones, especially
late in the training process. From a cognitive standpoint these can be thought of
as persistent weak hypotheses of the true procedure. But these weak hypotheses
should not persist indefinitely in the face of negative reinforcement, and should
eventually be given up on.

Our first implementation change is to add a new removal utility, a number
between 0 and 1 that when lowered below a threshold of .2 signals that a skill
should be removed from an agent. We try three different functions of “p” and
“n” (the numbers of instances of positive and negative feedback) for this utility:
1) the proportion correct p/(p+mn) (same as the which utility) 2) double counted
negatives p/(p+2n), and 3) nonlinearly counted negatives p/p+n+1/4n?). Non-
linearly counted negatives implements the intuition that skills that persistently
produce errors after considerable training are more likely to be faulty than skills
that only produce errors initially while a skills’ when-part rules are still being
refined.
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Our second implementation change introduces a fourth condition called ”re-
covering where” that enables overgeneralized where-part conditions to return to
a more specific state. Each newly generalized set of where-part conditions has its
own removal utility that is updated, when applicable, with positive or negative
feedback, and is removed when the utility calculated on the counts of positive
and negative feedback falls below a threshold of .5.

4.2 Results of Implementation Changes

For all tested variations of the two proposed implementation changes we ran
100 agents on 100 3x3 multi-column addition problems. The first problem is
always fixed to 215+846 to ensure that a large number of the agents exhibit the
where-part overgeneralization issue, and the remaining 99 problems are sampled
randomly.
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Fig. 1: Comparison of four recovery methods from where-part overgeneralization

Among the implementations of skill removal utility, nonlinearly counted neg-
atives (i.e. “p/(p+mn+1/4n?)”) reliably removed overgeneralized and persistent
weak skills, while the other methods still exhibited persistant error. We suspect
that the 'recovering where’ condition was ineffective because each competing
where-part generalization shares a when-learning mechanism, meaning that even
if bad generalizations are eliminated, eventually a considerable number of un-
usual training instances centered around irrelevant selection fields will remain
in the when training history, making it far more challenging to establish a set
of consistent when-part conditions. Whole skill removal by contrast is a consis-
tently more effective method of over-generalization removal since removing an
entire skill allows for a new skill to be induced in its place, giving when-learning
a clean slate to work with.

5 Conclusion

In this work we have identified challenges to achieving asymptotic performance
with simulated learners and remediated sources of persistent asymptotic error
in simulated learners implemented with the Apprentice Learner Framework.
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