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Abstract. STAND is a data-efficient and computationally efficient machine learning approach that
produces better classification accuracy than popular approaches like XGBoost on small-data tabular
classification problems like learning rule preconditions from interactive training. STAND accounts for
a complete set of good candidate generalizations instead of selecting a single generalization by breaking
ties randomly. STAND can use any greedy concept construction strategy, like decision tree learning or
sequential covering, and build a structure that approximates a version space over disjunctive normal
logical statements. Unlike candidate elimination approaches to version-space learning, STAND does
not suffer from issues of version-space collapse from noisy data nor is it restricted to learning strictly
conjunctive concepts. More importantly, STAND can produce a measure called instance certainty that
can predict increases in holdout set performance and has high utility as an active-learning heuristic.
Instance certainty enables STAND to be self-aware of its own learning: it knows when it learns and what
example will help it learn the most. We illustrate that instance certainty has desirable properties that
can help users select next training problems, and estimate when training is complete in applications
where users interactively teach an AI a complex program.
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1 Introduction

In ecology, a stand is a contiguous region of trees that share similar characteristics. An
ecological stand is a habitat that is typically mutually beneficial to the trees that comprise
it. Analogous to its namesake concept, STAND is a method for learning a compact collection
of classifiers embedded in a shared data structure. The compact representation learned by
STAND holds every classifier that would be generated by a randomized greedy learning
process. In our explanation, we’ll use decision trees as an example for this underlying classifier
but the same method can be applied to other greedy strategies as well, including sequential
covering methods common in inductive logic programming [13].

STAND is particularly helpful when solving classification and concept induction prob-
lems common in an interactive task learning [9] setting. Interactive task learning (ITL) is a
vision for Al systems that can learn robust programs interactively from the natural instruc-
tions of untrained (typically non-programmer) users. Programming-by-demonstration [5] is
a central sub-problem within I'TL, enabling users to demonstrate the behavior of a program
instead of programming or naturally articulating the program’s structure. Programming-by-
demonstration is a desirable input approach because it only requires users to show what
their program should do, but not necessarily how those capabilities should be implemented.
When authoring large multi-faceted applications a user demonstration may represent only
one special case of a more flexible space of desired behaviors that may vary depending on
the context of the program’s initial input and its interanl states. In these cases, it is helpful



2 D. Weitekamp et al.

for ITL systems to induce rule-based representation languages like production rules or hier-
archical task networks (HTNs) [6], where individual rules or methods can generalize to serve
broader roles beyond their appearance in users’ initial demonstrated action sequences. In
these cases, I'TL systems must often induce preconditions for rules and methods to control
how and when they are executed within a complex program.

We promote STAND as being particulary helpful for the problem of learning rule precon-
ditions in an ITL setting from positive and negative examples of rule execution. This variety
of supervised inductive precondition learning envisions that correctness labels are collected
from users interactively as they verifying the induced behavior of the ITL agent. This ap-
proach has been taken, for instance, in authoring-by-tutoring systems [10,14] where authors
build educational technology by naturally tutoring an Al agent, initially with step-by-step
demonstrations, and later by grading its problem-solving attempts. These kinds of precon-
dition induction tasks typically involve learning conditions over noiseless features, and over
data that is typically small, poorly balanced, and has a low sample-to-feature ratio, because
the data was collected from interactive instruction. As we argue in the following sections
STAND excels in these particular circumstances and outperforms methods like XGBoost
that typically boast the highest accuracy at classification tasks over tabular features.

Moreover, STAND can directly support users in interactively training Al agents because it
is self-aware of its learning. STAND produces a measure on unseen examples called instance
certainty that can accurately estimate when new training examples produce increases in
holdout set performance, and which has high active-learning utility in terms of identifying
unlabelled examples that will help STAND learn the most. These two features can be used
to aid users in picking good next training examples, and for estimating when training is
complete—when the ITL system’s induced program is correct and complete.

2 Overcoming the Limits of Supervised Learning by Embracing
Ambiguity

Traditional supervised machine learning frames the problem of learning generalizations that
perform well beyond a training set as a matter of mitigating overfitting and underfitting.
In a small-data setting the properties of the distribution from which the data was sampled
cannot be estimated precisely and thus overfitting becomes especially problematic. Overfit-
ting is typically mitigated by methods of regularization that constrain how specialized or
complex models are allowed to become when fit to training data. Regularization methods
often sacrifice some training data performance to maximize performance on unseen data.

This framing of supervised learning where a theoretically optimal, yet fundamentally
imperfect predictor is fit to noisy data works well when data is numerous and when there is
some stochasticity in features or sample labels. However, in an interactive task learning (ITL)
setting [9], data is small because it is generated interactively from a single user, and the aim
is to enable the user to automate intended behaviors through various forms of instruction. In
this context, the user may reasonably expect that they can produce a program that reliably
works in every situation. In principle, this should be possible since in many cases we can
expect that the features available within the task are noiseless and that the program that
the user intends to produce has consistent well-defined behavior.
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The best practices of traditional supervised learning do not translate well to I'TL tasks.
For instance, it is rarely feasible to collect enough well-balanced data that one could reliably
model variations in a user’s generated data as samples of a common distribution, without
permitting major biases. For instance, training data generated from user’s feedback on an
agent’s proposed actions may accumulate far more positive examples than negative examples
as the agent improves in performance. Prior work along these lines [14] has reported that
users typically only accidentally produce important edge cases, and rarely produce them as
a result of employing good teaching strategies. Thus, important edge cases may be rarely
covered during training, if at all. Many data-driven approaches that rely heavily on the
relative frequencies at which patterns occur in data would perform poorly on this small,
poorly balanced, and sparse data. For instance, data-hungry deep-learning methods are likely
useless in this context.

Additionally, many of the tricks for reducing the overfitting of symbolic learning mecha-
nisms, like subsampling and pruning for tree classifiers, are irrelevant by their very principle.
After all, if one has set out to find conditions that are 100% accurate at separating correct
and incorrect applications of rule for non-stochastic programs, then the training set must
have 100% accuracy as well. No sacrifice in performance on the training set can be made
in an effort to optimally generalize beyond it since one is always aiming for, and expect to
achieve perfect performance. Of course, this expectation assumes that users catch all of their
mistakes, which is not something that can be guaranteed but can certainly be supported with
good interaction design choices, like affordances for reviewing past training interactions.

In a small-data setting fitting a classifier that has perfect performance on the training
set is often so easy that any generated solution will be almost arbitrary. There are typically
more perfect solutions than are feasibly generatable or even countable, and we can at best
employ classifiers with inductive biases that select among the more parsimonious ones. In
precondition learning finding a set of conditions that achieves 100% accuracy in all unseen
cases is like finding a secret special needle in a pile of needles—we would not know if we
happened to select the correct one even if it was right in front of us, and any attempt to
guess would just be an arbitrary choice.

The key to solving this problem is to abandon the idea that we can rely upon statistical
learning at all, and embrace that among the classifiers that could be learned from limited
data, the choice of the right one is an ambiguous one. Each user interaction provides evidence
of a program that the user intends to demonstrate to the Al agent. This intended program
remains ambiguous until the user provides sufficient evidence to disambiguate the intended
program from other possibilities. To support this perspective we can at best try to map out
all of the programs that the user may be intending to demonstrate and cut out large swaths
of possibilities as new evidence proves possibilities to be impossible. Approaching learning
in this way allows us to do a great deal more with limited data, both because we are no
longer arbitrarily guessing at solutions from limited evidence and because knowing all of the
possibilities means we can support users in making decisions that can maximally reduce the
ambiguity of selecting the right generalization.

The notion of learning by updating possible spaces of classifiers is not a new one. The
theory of version spaces [11,12] dates back to the early days of machine learning, and describes
a general theory for efficiently representing spaces of all generalizations consistent with a set
of examples. For a particular representation language, a version space bounds the set of all
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consistent examples with two boundary sets. Version spaces’ boundary sets can enclose a
space of consistent generalizations far larger than can be feasibly enumerated and provide a
means of updating the space to cut out large sets of possible generalizations as they prove
to be inconsistent with new training examples. Version spaces require a definition of relative
generality between generalization hypotheses. For instance, in the generalization language of
conjunctive logical statements, a statement consisting of one predicate X5 = True, is more
general than a conjunction of two predicates AN D(X5 == True, X3 == False). The two
boundary sets consist of a maximally general set GG, and a maximally specific set S. The set
of all hypotheses contained in the version space is the set of hypotheses in S or more general
than S, but no more general than any hypothesis in G.

The seminal work on version spaces [11] describes them as “generalization as search”.
Although “search” is a somewhat misleading analogy. As the terms searching and planning
are most commonly used, they evoke a process of looking through individual possibilities in
pursuit of a known target, like finding a needle in a haystack. Version spaces do something
far more powerful. They cut out vast sets of possibilities as new evidence proves them to be
impossible. They systematically cut out possibilities in pursuit of the particular good needle
in the needle stack, throwing out large sets of generalizations that are inconsistent with new
examples. A version space may narrow down to a single possible generalization when its
general set G and specific set S converge to a single generalization. However in practice,
when data is limited, convergence to a single generalization cannot be guaranteed or even
expected. This is not a weakness of version spaces, so much as a realistic treatment of the
ambiguity of inducing correct generalizations from limited data.

One limitation of version spaces is that they are typically impractical or by some char-
acterizations [7] even intractable to learn over disjunctive normal logical statements. A dis-
junctive normal logical statement is one that disjoins two or more conjunctions with an OR.
For instance:

OR(AND(X;5 == True, X3 == False), AND(X, =="1", Xy == True)) (1)

The classic candidate elimination approach to version-space learning is limited to learning
just conjunctive statements.

STAND can learn a version-space-like structure with G and S boundary sets, that approx-
imates a version space over this known intractable representation language. Unlike typical
algorithms for learning version spaces, STAND’s approximate version space learning does
not fail catastrophically when it encounters noisy or mislabelled data; it does not suffer from
version space collapse. More importantly, as I will demonstrate in the following sections,
STAND is much more useful than a single classifier or even an ensemble of classifiers, both
because it tends to achieve higher performance from less data, and because it can produce
very reliable estimates of its learning progress that are useful for users in an ITL setting.

Symbolic classification methods that learn a single set of conditions can only accept or
reject a new unlabeled example, but STAND can learn an approximate version space of
possible condition sets that produce competing predictions about an example’s correctness.
Much like an ensemble, this allows STAND to estimate the certainty of its predictions based
on a set of competing hypotheses. While many statistical machine-learning methods can
make continuous probabilistic predictions about the class labels of unseen examples, they
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are often too data-inefficient to be helpful in an ITL setting. STAND by contrast requires
remarkably little data to accurately estimate the certainty of its predictions. Additionally,
STAND’s estimates of prediction certainty have a structurally meaningful counterfactual
interpretation that differs from typical statistical estimates of class probability. If an example
is accepted by a part of STAND’s approximate version space but rejected by another, then
one of the two parts will be eliminated when the label is revealed. This allows STAND to
quantify how much of its approximate version space will change as a result of receiving
feedback from a user. STAND can essentially predict which training examples will help it
learn, and which will not.

3 STAND: Building A Complete Space of Classifiers for the Cost
of One

In ecology, a stand is a contiguous region of trees that share similar characteristics. An
ecological stand is a habitat that is typically mutually beneficial to the trees that comprise
it. Analogous to its namesake concept, STAND is a method for learning a compact collection
of classifiers embedded in a shared data structure. The compact representation learned by
STAND holds every classifier that would be generated by a randomized greedy learning
process. In our explanation, we’ll use decision trees as an example for this underlying classifier
but the same method can be applied to other greedy strategies as well, including sequential
covering methods common in inductive logic programming [13].

To efficiently produce every classifier that would be produced by a greedy learning process,
STAND expands every decision whenever an arbitrary choice would be made to break ties
between nearly equally good options. For instance, when applied over decision trees, STAND
is structurally similar to an option-tree [8]: a variation of decision trees where each node splits
every feature with the highest split criterion reduction simultaneously, instead of splitting on
just one (often randomly selected) best feature. Like an option-tree, instead of only expanding
one feature that optimally splits data at each node, STAND expands every split that would
decrease the impurity criterion nearly as well as the best split AC;,,,,(X;) >= aAC;,,(X.);
where the parameter a € (0, 1] varies the rejection rate for splits relative to the best split.
Choosing a = 1.0 to only accept splits with utility equal to the best split often works well
for small non-noisy datasets. Like an option-tree, each node in STAND has 2n edges each
leading to child nodes, where n is the number of best splits for that node. By contrast,
normal decision trees typically have strictly 2 child nodes per non-terminal node.

While regular option-trees are unwieldy or intractable to compute without imposing
constraints, such as limits on node depth or the number of expansions at each node, STAND
can efficiently generate a complete compressed option-tree-like structure by caching nodes by
the set of subsets of samples that they select. Since the set of expanded splits at each node
depends entirely on the training samples selected by that node, we can route all edges that
select the same subset of samples to the same shared node. Reusing nodes in this manner
allows STAND to learn a complete space of possible decision trees, often in only a little more
time than it takes to learn a single decision tree. This trick also makes it easy to support
partial incremental learning over streams of examples. Highly ranked splits tend to remain
highly ranked when new examples arrive, so when new examples are filtered into the tree
only those nodes with changes in their set of best splits need to be refit.
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Fig.1: An example of a Decision Tree and STAND fit to the same input data. In STAND
multiple splits (filled grey circles) are expanded per node. STAND builds a general condition
space (top-right) that is bounded below by a specific extension (bottom).

Figure 1 below shows an example of a decision tree and STAND fit on the same data.
Each sample 0-6 in the training data has seven binary features Xj,..., X7. In the decision
tree, Xy is selected randomly for the root node from among the best features for splitting the
data. =Xy (i.e. Xy = 0) selects a pure subset of two positive samples and X4 (i.e. X4 = 1)
selects an impure subset that is then split further by X5 into leaves with purely positive or
negatively samples. By contrast, STAND splits X, at the root, but also X35 and Xg as well.
STAND'’s sample caching trick makes it so that the 6 edges formed by these 3 splits only
lead to 4 nodes (two of which are reused by two edges) instead of 6 nodes (one per edge)
like in a normal option-tree. The 4 nodes downstream of the root are reached by following
edges that select sample sets [0,2,4,5,6], [0,3,4], [1,2,5,6], and [1,3] respectively. The last one
is a leaf because it only selects positive samples, while the others are still impure, and are
further split into pure leaves. Note that unlike a typical decision tree, in STAND a single
sample can filter into multiple leaves. For instance, the 3rd leaf [3,4] and last leaf [1,3] in
Figure 1 both contain sample 3.

From a conventional decision tree, one can derive a disjunctive normal logical statement
that only selects training samples of a particular class. If all leaves are pure, which can be
expected for non-stochastic data, then edges along paths from the root of a decision tree
to its positive leaves form conjunctions of literals that each only select positive training
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examples. For instance, in Figure 1 the decision tree’s derived statement for positive samples
is OR(X4X5,—X}). In STAND, multiple edges can lead into the same node, meaning there
are multiple paths of literal sequences (i.e. conjuncts) that select the same sub-samples. In the
top-right of Figure 1 we represent these options in parentheses separated by the | symbol. For
instance, the choice of literals (X,| Xg) corresponds to the two edges leading into the left-most
node that selects [0,2,4,5,6]. STAND’s caching trick helps account for alternative conjuncts
that select the same subsets of training samples, and thus it is not just an optimization, but
also a means of compressing sets of alternative generalizations. For instance, the left-most
leaf in Figure 1 is reached by any conjunct in the Cartesian product of options represented

by Go:

Go = (Xu|X6)(Xo|7X5) = XuXo | XeXo | Xum X5 | X6 X5 (2)

It is important to keep in mind that STAND’s node caching trick is only helpful in limited
circumstances. For instance, it would likely not be effective in many data-driven prediction
settings where classifiers are learned over large datasets with noisy features or labels. In
these cases, there would be very little consistency between the subsets of samples selected
by different splits leading to limited potential for node reuse. Large training sets would also
make subset hashing and comparison computationally expensive. However, this approach
thrives in non-stochastic small-data environments, including many ITL applications. This
includes precondition induction like when-learning where the target generalization is a set of
hard requirements and not a probabilistic predictor. Preconditions after all must be express-
ible in a representation language of non-stochastic predicate-like features. It is admissible
for stochastic features to be present in the dataset so long as they are not necessary for
discriminating the target preconditions.

3.1 A Space of Classifiers for the Cost of One

Any Al approach used in an interactive setting should execute quickly to avoid subjecting
users to considerable lag. In this section, we report STAND’s average fit and predict times
as they are used in an ITL tool for building educational programs. In this tool STAND’s
.fit() and .predict() sub-routines may be called tens to hundreds of times as a side
effect of individual user interactions. Thus, keeping these subrountines to fewer than about
10 milliseconds is important for seamless usability.

In this context, STAND provides a great deal of benefits with almost no efficiency draw-
back. On average fitting and predicting with STAND takes only marginally more time than
fitting and predicting with a single decision tree. Averaging over a long 100 problem training
sequence refitting STAND takes about 5.30 ms whereas a single decision tree takes about
4.42 ms. On average for predicting the correctness of a new action STAND takes 0.35 ms
and a decision tree takes 0.27 ms. With either of these precondition learning approaches the
total time it takes to re-fit several classifiers and make several new predictions to refresh the
display rarely exceeds 300ms. Replacing these classifiers with ensemble methods like random
forests or XG Boost leads to update times of a second or more—long enough to be noticeable
to users or even be disruptive to their training process.
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Fig.2: Average .fit() and .predict() durations for Random Forest with 100 estimators,
XG Boost, Decision Tree and STAND used as when-learning mechanisms for agents trained
on 100 multi-column addition problems. Timed on an Ubuntu 22 laptop with an 11th gen-
eration Intel i7-1165G7 processor and 16 GB of RAM.

STAND’s caching trick is a big part of why it is nearly as efficient as a single decision tree.
Typically decision trees calculate the utility of every possible way of splitting each node’s
sub-samples. STAND simply hashes the indices of the two child subsets generated by each
split and routes equivalent child subsets to the same node. When data is small and mostly
noiseless STAND’s total number of nodes is not more than a small factor greater than a
normal decision tree’s. Very little extra work is performed per node since each node only
needs to calculate its split utilities once.

3.2 STAND as an Approximate Version Space

STAND’s compressed option-tree-like structure of cached nodes is akin to the general set G
of a version space. Since a true G over disjunctive normal logical statements is intractable to
compute, it goes without saying that STAND’s structure is only an approximation—a strict
subset of a true general set G. Nonetheless, this structure shares important properties of a
true version space’s general set G:

1. The members of G are not any more specific than they need to be.
2. The members of G cover all of the most-general possibilities (by some definition).

The first property depends on the choice of greedy classifier underlying STAND but is
certainly true of decision trees and sequential covering. These processes construct conditions
one split or literal at a time and do not grow generalizations any more than necessary to
separate training examples by label. The second property follows from the fact that STAND
expands all options that could be randomly constructed by repeatedly rerunning one of these
greedy construction processes. This is of course a much looser definition than the typical the-
oretical notion of a G set which includes all of the most-general consistent generalizations
expressible within a representation language. Nonetheless, STAND’s approximate G is use-
ful in practice because it spans a well-defined space of good choices within a disjunctive
representation language.
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STAND’s general set G is encoded in a distributed manner over its leaf nodes. Examples
filter into one or more leaves because they satisfy one or more of the alternative literal
statements associated with each of the ancestor nodes along some path leading from the
root. The paths leading to each leaf node i form a set of alternative conjunctive statements
G; that select all of the training samples associated with that leaf node. As in the example
above, the set of all conjunctions in G; is the Cartesian product of each alternative. For
instance, in Figure 1, leaf : = 0 forms a space of alternative conjunctive statements Gy:

Go = (Xu|X6)(Xo|7X5) = XuXo | XeXo | Xum X5 | X6 X5 (3)

where | represents an alternative choice. Let L., be the set of all minimal subsets of
leaves that cover the positive training examples. For each covering set L., € L., a portion
of the general set G, is formed by disjoining every combination of alternative conjunctions
for all 7+ € Ly,. The set of disjunctive statements generated by L.,, is then:

Grow ={1V - . Vaul(g1,---,9n) €Go X ... x Gy} (4)

Where V indicates disjunction and x indicates the cartesian product of all G; associated
with L.y,. The total set of most general disjunctive statements covered by STAND’s effective
G set is then simply:

G = U GlLeo (5)

LCO'U eﬁco’v

STAND’s specific set S is formed by extending the generalizations associated with each
leaf node 7 so that they select any additional features that are common between the samples
selected by each leaf. The specific extension s; for each leaf ¢ is a conjunction of literals
selecting all common features in the leaf’s subset of samples that do not overlap with any of
the literals comprising G;. Each pair of G; and s; define a mini-version space of conjunctive
statements within the whole. Any conjunction in G; can be extended by adding literals from
s; to form a new conjunction that selects all of the training samples that filter into leaf i.

The classic candidate-elimination approach for learning conjunctive version spaces [11]
can fail catastrophically when it encounters examples that are logically inconsistent with its
enclosed generalizations. This is called version space collapse, and it makes traditional version
space approaches brittle to training on noisy data. STAND does not suffer from this issue. It
is as robust to noise as whatever greedy algorithm it is applied to. For instance, when applied
to decision trees, as we have described above, a mislabelled example can prevent STAND
from converging to perfect performance, but it will not cause STAND to break entirely. In an
ITL setting, if a user mislabels the correctness of an example, then STAND will very likely
introduce new disjunctions into its tree structure. In the best case the mislabelled example
may filter into its own leaf isolated from the rest, which would produce minimal changes
to model behavior. Or in the worst case it may filter into a leaf that captures several other
properly labelled examples, which could alter the literals that select those examples, or cause
the specific extension s; for the leaf to over-generalize.
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4 Estimating Model Ambiguity and Instance Certainty

Interpreting STAND as an approximate version space allows us to quantify various notions
of ambiguity and certainty. We define model ambiguity as the size of the approximate ver-
sion space. It captures how ambiguous the target generalization remains given all of the
generalizations that are equally consistent with the current training data. Instance certainty
captures how unambiguous the label prediction of an example is given all of the generaliza-
tions that capture the example. Low instance certainty indicates high disagreement between
the predictions of alternative generalizations in a STAND model’s version space.

Model ambiguity is loosely analogous to the inverse of the posterior distribution P(0|X)
of a Bayesian statistical model and instance certainty is loosely analogous to the poste-
rior predictive distribution P(y|z, X,Y"). However, these probabilistic concepts are imperfect
analogs since STAND is not nearly as sensitive to the distributional properties of data as a
typical parameterized statistical model. Each element in STAND’s space of generalizations
is equally consistent with the training data, and possesses no notion of relative likelihood be-
tween them, nor do generalizations have parameters derived from the frequencies of patterns
in the data. Consequently, STAND does not need to be trained on large sets of independent
and identically distributed examples. STAND requires diverse examples to learn well, but
not necessarily numerous or well-distributed ones.

4.1 Model Ambiguity

In practice, the true values of model ambiguity and instance certainty are prohibitively
expensive to compute since they require generating G from all minimal spanning sets L.
This runs the risk of combinatorial explosion. For practical purposes, it is more helpful to
use heuristics that change throughout training in a manner reflective of changes in model
ambiguity and instance certainty. As a simplification, we can calculate a heuristic A for
the total model ambiguity by summing a heuristic A; representing the size of each leaf’s
independent mini version space. The true total size of each leaf 7’s mini-version-space is on
the order of:

size; = ([ 1asaD) (1 + |si])! (6)

95i€Gi

Estimating this size precisely is not particularly useful, since the magnitude of size; is
highly sensitive to the size of the specific extension s;, leading to a number that can vary
wildly between leaves. It is far more useful to simply sum the number of literals in G; and s;

to make for an easy-to-compute, numerically stable heuristic that reflects immediate changes
to the boundary sets G and S. We’ll define A; and A to be:

A= (Y lgal) + Isi (7)

95i€Gi

A=A (8)
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In the above, |gj;| represents the number of alternative choices of literals in ancestor node
7 of leaf 7. Because of node caching each node may have multiple parents, and thus finding
all |g;;| for leaf i involves traversing several branching possibilities back to the root.

4.2 Instance Certainty

To compute instance certainty we must consider how examples may be filtered into several
leaves that disagree in label prediction. We must consider three varieties of disagreement
that may occur when an example is compared to STAND’s approximate version space.

First, an unlabelled example can simultaneously filter into multiple positive leaves and
multiple negative leaves. This disagreement is similar to the prediction disagreement between
classifiers within an ensemble.

Second, within each of the leaves that accept the example, if the true correctness label
agrees with the leaf’s label, the mini-version-space formed by G; and s; of leaf i may reduce in
size to accommodate the new example. Subsets of the literals in each g;; € G; and literals of
the specific extension s; may be inconsistent with the new example and thus will be dropped.
This will reduce the total heuristic size A; of leaf i’s mini-version-space.

Third, if a user’s stated correctness label disagrees with the leaf’s label then refitting the
option-tree structure will result in extensions or rearrangements of nodes in order to achieve
purity in all leaves. These sorts of changes are largely unpredictable without speculatively
refitting with alternative example labels and are likely to effectively increase the size of A.
As these sorts of changes are difficult to characterize analytically it is better to ignore them.
Part of the curse of trying to approximate a version-space over disjunctive concepts is that
the space must grow as it entertains new disjunctions. Consequently, A is unlikely a useful
heuristic of learning progress on its own. However, instance certainty is still useful if we only
focus on how new examples may reduce the size of each known A;.

Given these considerations, we can calculate the certainty that a new example x belongs
to the positive class or negative class independently. For a set of positive leaves L, (x) that
accept an unlabelled example x we can find the average disagreement of their mini-version
spaces. If A} is the value of A; after shrinking from accommodating the new example then
the proportion of literals bounding ¢’s mini-version-space that accepts the example is A}/A;.
Averaging over each leaf in L, (z) we get:

1 1 (Zg/..egf |9§Z|) + |8}
I0(z) = AJA) = —— i
= 2 WA B 2 e m D

If we also compute IC(x)_ from the negative leaves that accept x we can define IC(z)
as a value ranging from -100% to 100% that can be easily placed within an interface and
interpreted by a user.

e if 1C > I1C(x)_
IC(x)_ otherwise
Compared to other measures of model probability, instance certainty is particularly infor-

mative to a user in an I'TL setting since it captures prediction certainty, example-by-example
learning utility, and indirectly indicates learning completion when IC(x) = 100%. Many

11
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statistical models can produce continuous probability predictions from the contributions of
either a single classifier’s internal weights or the competing outcomes of multiple models in
an ensemble. By contrast, /C(z) accounts for all of the predictions of alternative consis-
tent generalizations within STAND’s version space. Relative to STAND, most methods for
estimating prediction probabilities do not rely on a particularly complete account of alter-
native predictors. Bayesian estimations of posterior predictive distributions P(y|z, X,Y") by
integration over a posterior P(0|X,Y’) are a notable exception, although in practice these
measures are hard to compute, and lack some of IC(z)’s desirable properties as a helpful
signal to users.

For instance, when IC(xz) = 100% on an unseen example = that means that STAND’s
version space encloses no positively labeled generalizations that reject x, meaning that noth-
ing can be learned by verifying that z is correct. IC(xz) = 100% may be a false positive if
the users’ examples are very similar to one another or if they have not yet provided many
negative examples.

5 Evaluating Learning Performance and Certainty Estimation
Quality

To assess STAND’s capabilities as a when-learning mechanism in an authoring setting, we
evaluate its performance against several alternative when-learning mechanisms in two tu-
toring system domains. We evaluate each model on its overall predictive performance per
problem, and performance on measures of prediction quality.

5.1 Methods

Using an authoring-by-tutoring system for ITL-based authoring of educational technology
we train several agents with several competing methods of precondition learning. We utilize
a system similar to the one reported by Weitekamp et. al [14], and use an automated train-
ing system that mimics the demonstrations and feedback that an ideal user would provide
while authoring. We apply this special authoring training approach in the two domains:
multicolumn addition and fraction arithmetic.

In this setup, each agent receives ideal on-demand demonstrations and correctness feed-
back. At each state, all of the agent’s proposed actions are given correctness feedback. If
an action is missing then it is demonstrated to the agent with annotations that make the
underlying reason for the action unambiguous. Each demo is annotated with the formula
for producing the action’s value, and the arguments used. These additional demonstration
annotations support mechanisms for inducing the then-part of each rule’s if-then structure
(readers should refer to prior work [14] for a description of those mechanisms), and this
essentially makes it so that all errors in our simulations can be attributed to the various
precondition learning approaches that we employ.

We compare several classifiers for precondition learning with STAND:

1. Decision Tree: A decision tree using gini impurity [3] as the impurity criterion. We use
STAND’s implementation, expanding just one random split at each decision point.
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2. Random Forest: Scikit-learn implementation of random forest ensemble [2] of 100 de-
cision trees. Random forests use bagging [1] to independently train several decision trees
on subsets of the data.

3. XG Boost: An ensemble method that trains multiple decision trees one at a time. This
method uses gradient-based sampling to re-weight the samples for subsequent trees [4].

These tree-based methods are chosen because they excel at learning from small datasets
of structured data. In all models no limits are set on tree depth or leaf size since for these
condition-learning tasks the agents are provided with features that are sufficient for sepa-
rating correct and incorrect candidate skill applications perfectly. Since condition learning
is noiseless the trees will already tend to not become more complex than the ideal solution,
and limiting their depth could only prevent the ideal solution from being discovered.

The two ensemble methods are included for comparison with STAND’s comprehensive
version-space-based approach, and to compare the utility of their prediction probabilities
with instance certainty /C(x). Each model is re-trained on 40 repetitions on a sequence
of 100 randomly generated problems. However, in the active-learning conditions described
below, agents self-select their next training problems. After each completed training problem
each agent is evaluated on a holdout set of 100 problems. All agents are evaluated on the
same holdout set for each domain.

In the active learning conditions agents assign a certainty score to each problem in the
random problem pool. For each candidate next problem the agent rolls out every sequence
of actions that it predicts to be correct along every possible diverging solution path. For
each problem each action produced along this rollout is given a certainty value—IC/(x) for
STAND and prediction probability for the other models. The certainty score for a problem is
the minimum certainty value assigned to all actions produced in this rollout that are predicted
to be correct. The minimum is used instead of the average so that problem selection is not
biased by the number of problem steps. After each training problem, the problem in the pool
with the lowest certainty value is selected as the next problem. Then the selected problem and
the highest certainty 50% of problems are replaced with randomly regenerated problems. This
resampling ensures that the pool tends to contain a high proportion of uncertain problems.

5.2 Evaluating Prediction Performance and Stability

STAND'’s raw predictive performance compared to alternative methods is only one element of
evaluating its usefulness in an interactive task learning setting. Ideal precondition learning
should rapidly converge to a state of 100% holdout set accuracy and alter its prediction
behavior conservatively—changing predictions only when new examples provide evidence
to suggest the change. Methods like decision trees that randomly pick among alternative
choices when fitting can produce an issue where predictions on unlabeled examples change
dramatically between training events. In an ITL setting, users may find that the actions
suggested at each problem state change spontaneously to include new incorrect actions or
exclude correct ones. Thus, in addition to raw model performance, it is important to evaluate
the stability of the precondition learning algorithm’s predictions. With these considerations
in mind we evaluate STAND’s prediction behavior to the comparison models on per-problem
completeness, per-problem errors by type, and error re-occurrence rate.
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Per-Problem Completeness Below we report each model’s completeness performance on
a holdout set of 100 problems after each training problem. We define completeness here as
“model-tracing completeness” [14]: the average number of problem states along all correct
solution paths where the agent would only suggest every correct action and no incorrect
actions. Completeness reflects the proportion of problem states in the holdout set where
when-learning produces 100% correct predictions.

MC Addition Fractions

100 +

90 A

80 A

70 1

60 1

501 STAND 50 1 STAND
—— Decision Tree —— Decision Tree
40 1 —— Random Forest 40 —— Random Forest
—— XGBoost —— XGBoost
30 - T T T T T 30 - T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 3: Average holdout completeness by problem.

Table 1: Average Holdout Completeness at Problem N, and Number of 100% Complete
Repetitions at problem 100.

MC Addition Fractions
N=20 N=50 N=100 | 100% Reps N=20 N=50 N=100 | 100% Reps
STAND 85.45% | 96.10% | 98.62% 19/40 98.72% | 99.91% | 99.99% 38/40
Decision Tree 75.75% 91.86% 96.97% 10/40 88.15% 97.24% 99.88% 38/40
Random Forest | 64.16% 90.02% 95.53% 0/40 88.13% 97.44% 98.97% 11/40
XG Boost 81.20% 95.40% 98.01% 3/40 81.12% 96.20% 97.34% 27/40

In both domains, STAND’s average completeness is higher than the competing models
throughout the training sequence. This implies that STAND has better overall model per-
formance, and data efficiency since it can achieve greater levels of completeness with fewer
training problems. In 19 of 40 multicolumn addition repetitions STAND achieved 100% com-
pleteness after training on a sequence of 100 problems compared to 10 of 40 repetitions for
decision trees. In fractions, 38 of 40 repetitions achieved 100% completeness with STAND
and decision trees. The relative performance of the decision tree, random forest, and XG
Boost varies between domains. Notably the random forest was the worst in multicolumn
addition, likely because its bagging approach of sampling subsets of the data had the effect
of dropping important edge cases, which are particularly important in this domain.

The relatively poor performance of random forests highlights that models that tend
to work well in a data-driven machine learning setting do not necessarily work well in an
interactive task learning setting. When fitting an imperfect predictor to a large noisy dataset
fitting on sub-samples can create helpful diversity in an ensemble. In our case however fitting
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on sub-samples most likely discarded important edge cases that could have provided valuable
evidence about the true preconditions, thus many of the tree instances in the random forest
most likely underfit the data.

5.3 Per-problem Errors by Type

A when-learning mechanism can make errors of omission where a correct action is considered
incorrect (i.e. a false negative), and errors of commission where an incorrect action is pre-
dicted to be correct (i.e. a false positive). Errors of commission are easy for users to fix and
hard to miss: the user must simply mark a proposed action as incorrect. Errors of omission
are harder to notice, and take slightly longer to fix: the user must demonstrate a correct
action missing from the set of proposed actions.

MC Addition Fractions
20.0 2.00
—e— STAND —o— STAND
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12.5 A 1.25 A
10.0 A 1.00 A
7.5 1 0.75 1
5.0 0.50 4
2.5 1 0.25 1
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Fig.4: Average omission errors by problem.
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Fig. 5: Average commission errors by problem.

Our results show that STAND tends to make strictly fewer errors of omission and com-
mission than the other models, except that in multi-column addition it does not make fewer
errors of omission than the two ensemble methods.
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Error Re-occurrence Rate Error re-occurrence rate is defined as the proportion of correct
predictions prior to a training event that transition into being incorrect after the training
event. A low error re-occurrence rate implies that errors strictly decrease with more training
examples and do not spontaneously reappear in problem states that have already been given
feedback. Error Re-occurrence Rates can also be broken down by type. The omission re-
occurrence rate is the proportion of true positives that transition into false negatives, and
the commission re-occurrence rate is the proportion of true negatives that transition into
being false positives.

Table 2: Total Error Re-occurrence Rates

MC Addition Fractions
Total Omission | Commission Total Omission | Commission
STAND 0.53% 0.43% 0.86% 0.05% 0.04% 0.08%
Decision Tree 0.38% 0.00% 1.48% 0.06% 0.00% 0.23%
Random Forest | 1.28% 1.37% 0.98% 0.41% 0.52% 0.07%
XG Boost 0.74% 0.73% 0.81% 0.81% 0.96% 0.34%

Our results indicate that overall STAND does not succeed at reducing error re-occurrence
rates over single decision trees, although it is slightly better in fractions. However, since
STAND makes fewer errors overall this result is not necessarily an indication that STAND
is less desirable on this front. STAND generally produces fewer error re-occurrence events
than the two ensemble methods, and has a low ratio of omission re-occurrence events to
commission re-occurrence events. A low rate of omission re-occurrence events is desirable
since this implies that authors are less likely to find that proposed actions spontaneously
disappear.

5.4 Evaluating Instance Certainty

To be informative to users, STAND’s estimates of certainty must reflect actual learning
progress and eventual completeness. Instance certainty /C(z) should reflect STAND’s learn-
ing trajectory: it should be low when receiving the correctness label of an example that
would cause STAND to learn a lot, and high when STAND achieves a state of complete
mastery. Additionally, increases in certainty estimates should reflect changes in performance
on unseen problems.

We report several measures of desirable properties along these lines: precision at high
certainties, productive monotonicity, and normalized active learning utility. We compare
STAND with only those models that can produce prediction probabilities (i.e. the two en-
sembles), and where applicable each comparison model’s prediction probabilities are negated
when an action is predicted to be incorrect. This maps their values into to /C(x)’s range of
[—100%, 100%).

Precision at High Certainties If a when-learning classifier predicts that an action is
correct with a high certainty of 90%-100% then there should be a very low probability that
the user must inform the agent that the proposed action is actually incorrect.
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Table 3: Total Precision at High Certainties

MC Addition Fractions
> 90% = 100% > 90% = 100%
STAND 93.19% 99.81% 95.70% 100.00%
Random Forest 97.15% 94.79% 95.19% 93.72%
XG Boost 98.35% 100% 99.39% 100.0%

17

Our simulations show that XG Boost has the highest precision at high certainties. For

predictions of 100% STAND is nearly as precise as XG Boost in multicolumn addition and
equally 100% precise in fractions. For predictions of > 90% STAND’s precision is closer
to 90%, which is arguably a desirable property—as it indicates some alignment of instance
certainty IC(z) with actual ground-truth precision.

Productive Monotonicity Productive monotonicity is defined as the proportion of changes
in certainty estimates for actions in a holdout set that move toward 100% when the action
is correct and -100% when the action is incorrect. High productive monotonicity reflects the

degree to which changes in certainty estimates mirror actual learning gains.

Table 4: Total Productive Monotonicity

MC Addition Fractions
STAND 56.74% 78.54%
Random Forest 51.26% 50.61%
XG Boost 52.58% 50.90%
MC Addition Fractions
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Fig. 6: Productive Monotonicity By Problem

Our results show that STAND’s instance certainty /C(x) has considerably higher over-
all productive monotonicity than the two ensemble methods’ prediction probabilities. The
random forest and XG Boost’s prediction probabilities align with actual changes in holdout
performance not much more than 50% of the time—they are not much better than chance.
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In multi-column addition, STAND’s productive monotonicity is < 50% for the first 60
training problems and > 50% thereafter. This may be the case in this domain because in
the early stages of training STAND’s version space is still growing from permitting new
disjunctions. This growth introduces new leaves that reduce IC(x) but increase prediction
performance. In the later stages of training the version spaces enclosed by each leaf tend to
gradually shrink as possible generalizations are eliminated. Fractions may not show a similar
pattern because purely conjunctive preconditions tend to suffice in this domain, and so
STAND'’s effective version space is covered by fewer leaves and tends to shrink monotonically.

Normalized Active Learning Utility If the agent proposes an action with low certainty
then this should indicate high expected learning gains when the user verifies the action’s
correctness. Consequently, we can use instance certainty /C(z) and estimates of prediction
probability as heuristics in an active-learning scenario where the agent self-selects each next
training problem from a pool of random problems. We define normalized active-learning
utility as the average difference in completeness between agents that can and cannot self-
select problems divided by the total completeness deficit of the agents that cannot:

ﬁactive = (Cactive - Cnormal)/(l-o — Onormal) (11>

Active learning utility is a measure of the expected proportion of agent errors that can
be eliminated by allowing the agent to self-select the problems it is instructed on. The
denominator normalizes the completeness benefit of active learning by the total completeness
deficit of the baseline model to control for differences in baseline model performance.
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Fig. 7: Normalized Active Learning Utility by Problem

STAND shows positive active learning utility after problem 40 in multi-column addition
with a peak of nearly .5 at problem 80. An active learning utility of .5 indicates that half of
the remaining completeness deficit was made up by being able to self-select new problems
with IC(x). STAND shows high positive active learning utility in fractions after problem
60. The random forest shows some active-learning utility for early problems in multicolumn
addition, and throughout training for fractions. XG Boost consistently shows negative utility
in both domains.
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STAND may only benefit from active learning in the latter stages of training in both
domains because it is good for identifying edge cases to round out the final stages of training,
but less effective when nearly any new example would be helpful.

6 Conclusion

This work reports on the implementation of a novel machine learning algorithm called
STAND. We illustrated that STAND has benefits over go-to methods like XGBoost in situ-
ations like the induction of preconditions for rules in interactive task learning applications,
where data tends to be small and unevenly distributed because it is generated from interactive
instruction. STAND excels in situations like precondition learning where desirable features
tend to be noiseless. Unlike candidate elimination approaches to version-space learning that
are conceptually similar to STAND, STAND does not suffer from version space collapse and
is not restricted to learning strictly conjunctive concepts. We show that STAND’s unique
instance certainty measure can predict actual changes in holdout set performance, and can
be used to identify training instances that will help STAND learn most effectively. These
properties address two critical problems with systems where Al can be taught bottom-up
interactively: 1) users typically have no means of assessing when they are finished training
an agent, and 2) they typically have no way of assessing what examples will be helpful for
future training. STAND’s unique self-awareness of its own learning takes a major step toward
addressing these issues.
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