
Research Statement 
My research focuses on developing neurosymbolic AI systems that can learn and teach 

like humans do. My work takes a computational approach to studying human learning, aimed 
at building hybrid machine learning and generative AI systems that can efficiently and flexibly 
learn from the rich forms of natural instruction that arise in human-to-human tutoring. During 
my PhD at Carnegie Mellon University and postdoctoral research at Georgia Tech, I 
developed simulated learners that can induce and refine well-formed, reliable knowledge 
structures with as few training interactions as human learners (~12 or fewer) [4]. My simulated 
learners can learn from diverse forms of natural instruction, such as worked examples, 
correctness feedback, and natural language instruction. In my theoretical work, I have used 
these AI systems as computational models of learning [1,9] to precisely investigate how 
distinct learning mechanisms cooperatively manifest humans’ rapid learning and misconception 
formation. I have also investigated methods for testing and refining these computational theories 
in comparisons of simulated learners with student data [15]. In practical applications, I have 
used these teachable AI systems as agents that can learn tutoring behavior through bottom-up 
induction from human instruction, and reliably deliver that adaptive instruction at scale in the 
form of intelligent tutoring systems [5,6,14]. 
 
Thrust 1: Simulated Learners as Computational Theories of Learning 

Learning engineering has a theory problem. As founders of the field have argued [20], the 
learning sciences have produced broad theories of knowledge [19] and pedagogy [18], but lack 
causal, mechanistic theories of learning for making relative predictions about how variations in 
instructional methodology affect students’ knowledge formation and learning outcomes. While 
an aeronautic engineer can draw on theories of lift to precisely inform airplane design, an 
instructional engineer proceeds mostly by guesswork. Traditional statistical educational data 
mining uses student performance data to guide instructional refinement. However, at the 
individual level, what we observe in learners is only a glimpse into a complex cognitive 
landscape within developing minds. How profoundly might the learning sciences progress if we 
could look into and interpret the formation of knowledge within the minds of simulated students, 
and subject them as cognitive crash dummies to alternative forms of instruction? As the track 
lead for the Computational Models of Learning track at CMU’s LearnLab summer school—a 
first-of-its-kind workshop series—I have trained nearly 100 learning engineers to use my 
simulated learners in precisely these ways. 

A central outcome of my PhD research was the development of a theory called 
Decomposed Inductive Procedure Learning (DIPL) [4], which builds on decades of 
simulated-learner research. DIPL specifies how different abductive and inductive learning 
mechanisms work together to produce human-like learning of procedural tasks common in 
STEM domains. This computational theory specifies how humans generalize from small 
amounts of natural instruction, such as demonstrations and correctness feedback, to achieve 
knowledge-level learning. Beginning as nearly a blank slate with limited prior knowledge, my 
DIPL-based simulated learners can learn as quickly from intelligent tutoring system instruction 
as human students, which I have shown can be 1000x more efficient than deep 
reinforcement learning [4]. I have also demonstrated in several publications that these 
simulated learners can replicate human learning curves without fitting to student data 
[16,13]. Additionally, applications of my agents have predicted experimental outcomes in 
advance of running experiments with students [11]. In ongoing follow-up work, we have 
extended DIPL to learn from natural language instruction, including mechanisms for mutual 
disambiguation between worked examples and hints [10], setting the stage for agents that learn 
from scratch, naturally from human tutoring.  
 
Thrust 2: AI Evaluations and Epistemic Perspectives in EdTech 



While most research artifacts never find practical application, AI systems have a way of 
being applied in advance of evidence of their efficacy. In some cases, forms of evidence that are 
generally accepted by the majority of researchers can be epistemically flawed, having no 
bearing at all on real-world outcomes. In my own work, I have found evidence of this sort of 
widespread epistemic oversight in research on knowledge tracing systems, data-driven 
systems that learn to estimate students’ mastery of individual concepts and skills as they work in 
educational technology, and recommend appropriate next practice problems. As I have shown in 
simulation [7], the goodness-of-fit-based measures by which knowledge tracing systems are 
typically compared have no precise correspondence to their ability to appropriately prescribe 
next practice problems. This means new knowledge tracing systems that are cutting-edge in 
terms of their fit to data have the potential to harm student learning outcomes.  

Vastly greater epistemic problems arise from generative AI’s ability to convincingly replicate 
human behaviors while learning and performing in ways that are fundamentally distinct from 
human cognition. I have written [1] on how decades of philosophy of mind and cognitive science 
have paved a path for approaching these developments wisely. As a practical tool, learning 
engineers are simultaneously optimistic about generative AI yet troubled by its inaccuracy [3], 
unpredictability, and the absence of applied learning science in its design and common usage. 

Toward evaluating AI tools on their ability to deliver personalized cognitive support in 
automated tutoring and facilitate the precise study of human learning, I created TutorGym 
[2], a standard API for evaluating generative AI and computational models of learning at 
adaptive tutoring and student simulation. TutorGym interfaces AI agents with 223 different 
existing Cognitive Tutors, Apprentice Tutors, and OATutors. In our initial evaluations, we found 
that LLMs were poor at tutoring—none did better than chance at labeling incorrect actions, and 
next-step actions were correct only ~52-70% of the time—but they could produce remarkably 
human-like learning curves when trained as students with in-context learning. Used in 
combination with datasets collected from its tutoring systems, TutorGym will provide a testbed 
for my future work in student simulation and computational theory refinement. 

 
Thrust 3: Teachable Agents and Interactive Task Learning 

My simulated learners are interactive task learners; they can learn not only from data, 
but also rapidly from direct human instruction. For my PhD dissertation, I built AI2T, an 
interactively teachable agent for authoring intelligent tutoring systems (ITSs). Authors tutor 
AI2T by providing a few step-by-step solutions and then grading AI2T’s own problem-solving 
attempts. In just 20-30 minutes of interactive training (instead of hundreds of hours of 
programming), AI2T can induce robust rules for step-by-step solution tracking (i.e., 
model-tracing) that are 100% complete and accurate at automating intelligent tutoring system 
behavior. This enables learning engineers to author custom AI-delivered adaptive tutoring 
experiences with well-defined cognitive supports that are free of hallucination-based 
inaccuracies. Through bottom-up induction, AI2T induces and refines interpretable knowledge 
structures in the form of hierarchical task networks (HTNs), and has self-aware learning 
capabilities facilitated by an algorithm that I developed called STAND [8]. With STAND, AI2T 
can produce precise estimates of its own learning progress, which addresses a significant 
problem in interactive task learning: determining when the agent has finished learning. In my 
current postdoctoral research, I am combining AI2T’s bottom-up induction with methods of 
top-down knowledge construction from natural language (i.e., from explanations of HTN task 
decompositions into subtasks). This work focuses on both academic tasks and broader 
game-based and web automation-based tasks. Our approach has the potential to significantly 
outperform VLM-based agentic AI systems in task automation scenarios, laying a path for AI 
systems that are interpretable, easily customizable, self-aware of their capabilities, and 
extremely robust to error.  

 



Future Research: I aim to be at the forefront of AI systems that learn and teach like humans. 
My simulated learners solve the difficult problem of replicating human learning efficiency. Yet, 
there is a great deal to be done in terms of data-driven refinement of existing computational 
theories of learning. I hope to use student data to form precise points of comparison between 
human and simulated learners and develop a comprehensive cognitive architecture that 
addresses a wide range of facets of learning and cognition. I aim to expand upon my 
computational modeling work to build an extensive and flexibly usable simulated learner toolset 
that can execute a theory of learning on instructional technologies to make prescriptive and 
comparative instructional design predictions [17]. Generative AI presents an opportunity to 
shortcut the specification of complex prior knowledge like natural language interpretation within 
this system, but it is not a viable standalone tool for precise theory development. Additionally, I 
am waiting on two grants with the possibility of subcontracting to my new institution to explore 
the applications of teachable agents. One proposal to NSF CISE Core explores 
authoring-by-tutoring as a means of engaging learning engineers with the precise cognitive 
demands of their instruction as they author it. As they tutor an AI agent to author tutor behavior, 
they engage in a form of reflective cognitive task analysis by observing the learning of, and 
looking into the mind of, a simulated student. In a proposal to the Kaizen Toyota Research 
Initiative, users teach an AI agent to automate specialized workplace tasks, and the executable 
rule-based knowledge is used to teach operational knowledge to new employees. Both 
proposals include explorations of how knowledge learned by an AI agent can be used to 
flexibly deliver a variety of instructional approaches in mastery-based learning systems. As 
a long-term research goal, I am also interested in using simulated students as digital twins that 
reconstruct student knowledge states from data, and prescribe individualized instruction and 
diagnose misconceptions. 
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